This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339199 #17 Feb 16 2025 08:34:01 %S A339199 204,33145,4847163,545217435,61575093671,7050330616441, %T A339199 808723201743855,92672075290059017,10617254793634907021, %U A339199 1216460857186123433837,139377550879455782939427,15969325570952770252910697,1829698785056144504575785405,209639263869115933534540710701 %N A339199 Number of (undirected) cycles on the n X 5 king graph. %H A339199 Seiichi Manyama, <a href="/A339199/b339199.txt">Table of n, a(n) for n = 2..400</a> %H A339199 Vaclav Kotesovec, <a href="/A339199/a339199.txt">Empirical g.f.</a> %H A339199 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A339199 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %o A339199 (Python) %o A339199 # Using graphillion %o A339199 from graphillion import GraphSet %o A339199 def make_nXk_king_graph(n, k): %o A339199 grids = [] %o A339199 for i in range(1, k + 1): %o A339199 for j in range(1, n): %o A339199 grids.append((i + (j - 1) * k, i + j * k)) %o A339199 if i < k: %o A339199 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339199 if i > 1: %o A339199 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339199 for i in range(1, k * n, k): %o A339199 for j in range(1, k): %o A339199 grids.append((i + j - 1, i + j)) %o A339199 return grids %o A339199 def A339098(n, k): %o A339199 universe = make_nXk_king_graph(n, k) %o A339199 GraphSet.set_universe(universe) %o A339199 cycles = GraphSet.cycles() %o A339199 return cycles.len() %o A339199 def A339199(n): %o A339199 return A339098(n, 5) %o A339199 print([A339199(n) for n in range(2, 20)]) %Y A339199 Column 5 of A339098. %Y A339199 Cf. A339202. %K A339199 nonn %O A339199 2,1 %A A339199 _Seiichi Manyama_, Nov 27 2020