This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339200 #16 Feb 16 2025 08:34:01 %S A339200 4,16,120,744,4922,31904,208118,1354872,8826022,57483536,374412158, %T A339200 2438639080,15883563110,103454037120,673825180718,4388811619032, %U A339200 28585557862518,186185731404016,1212679737590398,7898522254036168,51445284278407878,335077523213321312,2182453613487235150,14214930709900240312 %N A339200 Number of (undirected) Hamiltonian cycles on the n X 3 king graph. %H A339200 Seiichi Manyama, <a href="/A339200/b339200.txt">Table of n, a(n) for n = 2..1000</a> %H A339200 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a> %H A339200 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A339200 <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a> %F A339200 Empirical g.f.: 2*x^2 * (3*x^4 + 4*x^3 + 2*x^2 - 2) / (6*x^4 + 8*x^3 + 15*x^2 + 4*x - 1). - _Vaclav Kotesovec_, Dec 09 2020 %o A339200 (Python) %o A339200 # Using graphillion %o A339200 from graphillion import GraphSet %o A339200 def make_nXk_king_graph(n, k): %o A339200 grids = [] %o A339200 for i in range(1, k + 1): %o A339200 for j in range(1, n): %o A339200 grids.append((i + (j - 1) * k, i + j * k)) %o A339200 if i < k: %o A339200 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339200 if i > 1: %o A339200 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339200 for i in range(1, k * n, k): %o A339200 for j in range(1, k): %o A339200 grids.append((i + j - 1, i + j)) %o A339200 return grids %o A339200 def A339190(n, k): %o A339200 universe = make_nXk_king_graph(n, k) %o A339200 GraphSet.set_universe(universe) %o A339200 cycles = GraphSet.cycles(is_hamilton=True) %o A339200 return cycles.len() %o A339200 def A339200(n): %o A339200 return A339190(n, 3) %o A339200 print([A339200(n) for n in range(2, 20)]) %Y A339200 Column 3 of A339190. %Y A339200 Cf. A339197. %K A339200 nonn %O A339200 2,1 %A A339200 _Seiichi Manyama_, Nov 27 2020