cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339204 Decimal expansion of the generating constant for the Fibonacci numbers.

This page as a plain text file.
%I A339204 #51 Dec 22 2024 13:47:10
%S A339204 2,9,5,6,9,3,8,8,9,1,3,7,7,9,8,8,0,4,9,8,3,1,6,9,0,0,9,7,9,1,1,2,0,9,
%T A339204 2,7,8,6,9,9,1,5,8,2,3,4,3,9,3,6,2,3,5,3,4,5,7,2,4,4,6,2,7,2,3,7,5,2,
%U A339204 7,4,6,4,4,6,6,8,3,4,6,7,6,9,3,0,4,1,7,5
%N A339204 Decimal expansion of the generating constant for the Fibonacci numbers.
%C A339204 Inspired by the prime generating constant A249270, but here for the Fibonacci numbers, A000045(n); generating the Fibonacci numbers for n > 2.
%C A339204 The producing function is given by f' = floor(f)*(f-floor(f)+1), starting with this constant, f' denoting the next f, and floor(f) being the terms of the sequence produced by this constant.
%C A339204 The number of correct digits obtained from the first n terms from the series expansion for this constant as given in the formula section is roughly about (n^2)/10 (~ (3/7)*(log(Fib(n))^2)) decimal digits; i.e., for a binary representation, about (n^2)/3 binary digits.
%H A339204 Dylan Friedman, Juli Garbulsky, Bruno Glecer, James Grime, and Massi Tron Florentin, <a href="https://www.researchgate.net/publication/330746181_A_Prime-Representing_Constant">A Prime-Representing Constant</a>, 2019.
%F A339204 Equals Sum_{n > 2} (A000045(n)-1)/(Product_{k = 2..n-1} A000045(k)).
%e A339204 2.95693889137798804983169009791120927869915823439362...
%p A339204 with(combinat, fibonacci): evalf(Sum((fibonacci(n) - 1)/Product(fibonacci(k), k = 2..n-1), n = 3..infinity), 120); # _Vaclav Kotesovec_, Nov 29 2020
%t A339204 Quiet[First[RealDigits[NSum[(Fibonacci[n] - 1)/Fibonorial[n - 1], {n, 3, Infinity}, Method -> {"WynnEpsilon", "ExtraTerms" -> 25}, NSumTerms -> 25, VerifyConvergence -> False, WorkingPrecision -> 105], 10, 100]], General::intnm] (* _Jan Mangaldan_, Nov 29 2020 *)
%o A339204 (PARI) suminf(n=3, (fibonacci(n)-1)/prod(k=2, n-1, fibonacci(k))) \\ _Michel Marcus_, Nov 27 2020
%o A339204 (Python)
%o A339204 n, sumn, sumd, termd, f0, f1 = 0, 0, 1, 1, 1, 1
%o A339204 while n < 33: # enough to obtain 100 digits
%o A339204     n, sumn, sumd, termd, f0, f1 = n+1, sumn*termd+sumd*(f0-1), sumd*termd, termd*f0, f0+f1, f0
%o A339204 pre, sumn, i, d = sumn//sumd, sumn%sumd, 0, ""
%o A339204 while i < 100:
%o A339204     dig, sumn, i = (10*sumn)//sumd, (10*sumn)%sumd, i+1
%o A339204     d = d+str(dig)
%o A339204 print(str(pre)+"."+d)
%Y A339204 Cf. A000045 (Fibonacci).
%Y A339204 Cf. A249270 (for primes), A339203 (for Mersenne prime exponents).
%K A339204 nonn,cons
%O A339204 1,1
%A A339204 _A.H.M. Smeets_, Nov 27 2020