This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339224 #6 Nov 28 2020 19:55:25 %S A339224 1,1,2,5,13,41,132,470,1730,6649,26122,104814,426257,1754055,7282630, %T A339224 30470129,128304158,543303752,2311904374,9880776407,42394198909, %U A339224 182537610058,788473887942,3415782381520,14837307126498,64608442956047,281975101347994,1233237605651194 %N A339224 Number of essentially parallel unoriented series-parallel networks with n elements. %C A339224 See A339225 for additional details. %F A339224 a(n) = (A007454(n) + A339158(n))/2. %e A339224 In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. %e A339224 a(1) = 1: (o). %e A339224 a(2) = 1: (oo), (o|o). %e A339224 a(3) = 2: (o|o|o), (o|oo). %e A339224 a(4) = 5: (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)). %o A339224 (PARI) \\ here B(n) gives A003430 as a power series. %o A339224 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A339224 B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p} %o A339224 seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+subst(x/(1+x), x, B(n)))/2} %Y A339224 Cf. A003430, A007454 (oriented), A339158 (achiral), A339223, A339225. %K A339224 nonn %O A339224 1,3 %A A339224 _Andrew Howroyd_, Nov 27 2020