This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339231 #10 Jan 18 2022 19:37:05 %S A339231 1,1,1,1,3,1,1,6,7,1,1,10,23,13,1,1,15,59,69,22,1,1,21,124,249,172,34, %T A339231 1,1,28,234,711,853,378,50,1,1,36,402,1733,3175,2487,755,70,1,1,45, %U A339231 650,3755,9767,11813,6431,1400,95,1,1,55,995,7443,26043,44926,38160,15098,2445,125,1 %N A339231 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n. %C A339231 A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. T(n, k) is the number of series or parallel configurations with n unit elements whose representation as a multigraph has k interior vertices, with elements corresponding to edges. Parallel configurations do not increase the interior vertex count and series configurations increase it by one less than the number of parts. %F A339231 T(n,0) = T(n,n-1) = 1. %F A339231 T(n,1) = binomial(n,2). %F A339231 T(n+2,n) = A002623(n). %F A339231 Sum_{k=1..n-1} k*T(n,k) = A339232(n). %e A339231 Triangle begins: %e A339231 1; %e A339231 1, 1; %e A339231 1, 3, 1; %e A339231 1, 6, 7, 1; %e A339231 1, 10, 23, 13, 1; %e A339231 1, 15, 59, 69, 22, 1; %e A339231 1, 21, 124, 249, 172, 34, 1; %e A339231 1, 28, 234, 711, 853, 378, 50, 1; %e A339231 ... %e A339231 In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. %e A339231 T(4,0) = 1: (o|o|o|o). %e A339231 T(4,1) = 6: ((o|o)(o|o)), (o(o|o|o)), ((o|o|o)o), (o|o|oo), (o|o(o|o)), (o|(o|o)o). %e A339231 T(4,2) = 7: (oo(o|o)), (o(o|o)o), ((o|o)oo), (o(o|oo)), ((o|oo)o), (oo|oo), (o|ooo). %e A339231 T(4,3) = 1: (oooo). %e A339231 The graph of (oo(o|o)) has 4 edges (elements) and 2 interior vertices as shown below: %e A339231 A---o---o===Z (where === is a double edge). %o A339231 (PARI) %o A339231 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)} %o A339231 VertexWeighted(n, W)={my(Z=x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1 + W*p) + Z)))); Vec(p)} %o A339231 T(n)={[Vecrev(p)|p<-VertexWeighted(n,y)]} %o A339231 { my(A=T(12)); for(n=1, #A, print(A[n])) } %Y A339231 Row sums are A003430. %Y A339231 Cf. A002623, A339228, A339230, A339232. %K A339231 nonn,tabl %O A339231 1,5 %A A339231 _Andrew Howroyd_, Nov 29 2020