This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339237 #50 Dec 22 2024 14:28:39 %S A339237 1,2,7,9,7,2,8,7,4,2,2,8,1,8,9,6,8,3,3,6,4,7,2,7,5,7,0,1,5,0,7,6,3,0, %T A339237 6,7,2,2,6,2,6,0,3,6,7,5,0,7,5,7,8,2,6,1,9,3,0,6,8,3,0,5,8,8,1,6,9,3, %U A339237 0,6,6,0,7,2,2,1,3,6,4,9,0,6,6,2,1,1,5,3,2,9,9,0,5,3,5,3,2,2,7,3,7,1,9,7,1,3,2,9,2,3 %N A339237 Decimal expansion of K = Sum_{m>=0} 1/(1 + 2*m + 4*m^2). %C A339237 This constant K and the constant J = A339135 allow the expression of the real and imaginary parts of: %C A339237 Psi(1/4 + i*sqrt(3)/4) = - J - log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*sqrt(3)*K; %C A339237 Psi(-1/4 + i*sqrt(3)/4) = 1 - J - log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*(sqrt(3) - sqrt(3)*K + Pi*tanh(Pi*sqrt(3)/2)); %C A339237 Psi(3/4 + i*sqrt(3)/4)= - J - i*sqrt(3)*k - log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/4) + i*Pi*tanh(Pi*sqrt(3)/2). %C A339237 Psi(-3/4 + i*sqrt(3)/4) = 1 - J - log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) + i*(sqrt(3)/3 + sqrt(3)*K). %C A339237 where Psi is the digamma function and i=sqrt(-1). %F A339237 Equals -i/(2*sqrt(3)) * (Psi(1/4 + i*sqrt(3)/4) - Psi(1/4 - i*sqrt(3)/4)). %F A339237 Equals Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/3 - Sum_{m>=0} 1/(3 + 6*m + 4*m^2). %e A339237 1.27972874228189683364727570150763067226260... %p A339237 K:= Re(sum(1/(1+2*n+4*n^2), n=0..infinity)): %p A339237 evalf(K, 120); # _Alois P. Heinz_, Dec 06 2020 %t A339237 RealDigits[N[Re[Sum[1/(1 + 2*n + 4*n^2), {n, 0, Infinity}]], 110]][[1]] %o A339237 (PARI) sumpos(n=0, 1/(1+2*n+4*n^2)) \\ _Michel Marcus_, Nov 28 2020 %Y A339237 Cf. A054569 (terms), A339135. %K A339237 nonn,cons %O A339237 1,2 %A A339237 _Artur Jasinski_, Nov 28 2020