A339245 Partrich numbers: positive integers whose square part and squarefree part are divisible by 2 and an odd prime.
216, 360, 504, 600, 792, 864, 936, 1000, 1080, 1176, 1224, 1368, 1400, 1440, 1512, 1656, 1944, 1960, 2016, 2088, 2200, 2232, 2376, 2400, 2520, 2600, 2664, 2744, 2808, 2904, 2952, 3000, 3096, 3168, 3240, 3384, 3400, 3456, 3672, 3744, 3800, 3816, 3960, 4000, 4056, 4104, 4200
Offset: 1
Examples
A positive integer is present if and only if it factorizes as 2 times an odd squarefree number > 1, an even square that is a power of 4 and an odd square > 1. This factorization of the initial terms is shown below. n a(n) 1 216 = 2 * 3 * 4 * 9, 2 360 = 2 * 5 * 4 * 9, 3 504 = 2 * 7 * 4 * 9, 4 600 = 2 * 3 * 4 * 25, 5 792 = 2 * 11 * 4 * 9, 6 864 = 2 * 3 * 16 * 9, 7 936 = 2 * 13 * 4 * 9, 8 1000 = 2 * 5 * 4 * 25, 9 1080 = 2 * 15 * 4 * 9, 10 1176 = 2 * 3 * 4 * 49, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Even Part, Odd Part, Square Part, Squarefree Part.
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{ie = IntegerExponent[n, 2], odd}, ie > 2 && OddQ[ie] && !SquareFreeQ[(odd = n/2^ie)] && !IntegerQ @ Sqrt[odd]]; Select[Range[4200], q] (* Amiram Eldar, Dec 04 2020 *)
Formula
Asymptotic density is 1/12 - 2/(3 * Pi^2) = 0.01578587757... . (Formula due to Amiram Eldar.)
Comments