This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339261 #13 Jun 28 2023 08:21:33 %S A339261 2,0,4,3,7,5,0,1,1,5,8,9,9,6,3,9,8,4,1,1,6,6,3,6,5,4,6,4,2,2,6,9,8,5, %T A339261 3,3,3,8,6,3,2,6,0,6,1,5,2,9,4,7,5,1,8,1,8,7,1,8,2,1,5,7,9,5,6,8,7,1, %U A339261 0,4,2,6,4,0,9,2,7,7,1,4,0,6,1,7,8,5,9 %N A339261 Decimal expansion of the conjecturally maximum possible volume of a polyhedron with 9 vertices inscribed in the unit sphere. %H A339261 R. H. Hardin, N. J. A. Sloane and W. D. Smith, <a href="http://neilsloane.com/maxvolumes">Maximal Volume Spherical Codes</a>. %H A339261 Hugo Pfoertner, <a href="http://www.randomwalk.de/sphere/volmax/pages/09.htm">Visualization of Polyhedron</a>, (1999). %H A339261 Hugo Pfoertner, <a href="https://www.youtube.com/watch?v=vyWvE6lPIt8">9-Vertex-Polyhedron with maximum volume inscribed in a sphere</a>, YouTube video, Feb 10 2021. %F A339261 Equals 3*sqrt(2*sqrt(3) - 3). %e A339261 2.0437501158996398411663654642269853338632606152947518187182157956871... %t A339261 RealDigits[3*Sqrt[2*Sqrt[3] - 3], 10, 120][[1]] (* _Amiram Eldar_, Jun 28 2023 *) %o A339261 (PARI) 3*sqrt(2*sqrt(3) - 3) %Y A339261 Cf. A010527 (volume of double 5-pyramid), A081314, A081366, A122553 (volume of octahedron), A339259, A339260, A339261, A339262, A339263. %K A339261 nonn,cons %O A339261 1,1 %A A339261 _Hugo Pfoertner_, Dec 05 2020