This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339275 #60 Dec 11 2020 13:27:51 %S A339275 1,2,2,1,2,0,2,2,2,0,1,2,2,0,2,0,0,2,2,2,2,0,0,1,2,2,0,0,2,0,2,0,2,2, %T A339275 0,0,2,0,0,2,2,2,2,0,1,2,0,0,0,0,2,2,0,0,0,2,0,2,2,0,2,2,0,0,0,2,0,0, %U A339275 0,2,2,2,2,0,0,1,2,0,0,2,0,0,2,2,0,0,0,0,2,0,2,0,0,0,2,2,0,0,2,0,2 %N A339275 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the terms of A040000: 1, 2, 2, 2, ... interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2. %C A339275 T(n,k) is also the number of horizontal line segments in the n-th level of the k-th largest double-staircase of the diagram defined in A335616 (see example). %C A339275 The partial sums of column k give the k-th column of A338721. %e A339275 Triangle begins (rows 1..28): %e A339275 1; %e A339275 2; %e A339275 2, 1; %e A339275 2, 0; %e A339275 2, 2; %e A339275 2, 0, 1; %e A339275 2, 2, 0; %e A339275 2, 0, 0; %e A339275 2, 2, 2; %e A339275 2, 0, 0, 1; %e A339275 2, 2, 0, 0; %e A339275 2, 0, 2, 0; %e A339275 2, 2, 0, 0; %e A339275 2, 0, 0, 2; %e A339275 2, 2, 2, 0, 1; %e A339275 2, 0, 0, 0, 0; %e A339275 2, 2, 0, 0, 0; %e A339275 2, 0, 2, 2, 0; %e A339275 2, 2, 0, 0, 0; %e A339275 2, 0, 0, 0, 2; %e A339275 2, 2, 2, 0, 0, 1; %e A339275 2, 0, 0, 2, 0, 0; %e A339275 2, 2, 0, 0, 0, 0; %e A339275 2, 0, 2, 0, 0, 0; %e A339275 2, 2, 0, 0, 2, 0; %e A339275 2, 0, 0, 2, 0, 0; %e A339275 2, 2, 2, 0, 0, 2; %e A339275 2, 0, 0, 0, 0, 0, 1; %e A339275 ... %e A339275 For an illustration of the rows of triangle consider the infinite "double-staircases" diagram defined in A335616. %e A339275 The first 15 levels of the structure looks like this: %e A339275 . %e A339275 Level "Double-staircases" diagram %e A339275 n _ %e A339275 1 _|1|_ %e A339275 2 _|1 _ 1|_ %e A339275 3 _|1 |1| 1|_ %e A339275 4 _|1 _| |_ 1|_ %e A339275 5 _|1 |1 _ 1| 1|_ %e A339275 6 _|1 _| |1| |_ 1|_ %e A339275 7 _|1 |1 | | 1| 1|_ %e A339275 8 _|1 _| _| |_ |_ 1|_ %e A339275 9 _|1 |1 |1 _ 1| 1| 1|_ %e A339275 10 _|1 _| | |1| | |_ 1|_ %e A339275 11 _|1 |1 _| | | |_ 1| 1|_ %e A339275 12 _|1 _| |1 | | 1| |_ 1|_ %e A339275 13 _|1 |1 | _| |_ | 1| 1|_ %e A339275 14 _|1 _| _| |1 _ 1| |_ |_ 1|_ %e A339275 15 |1 |1 |1 | |1| | 1| 1| 1| %e A339275 . %e A339275 For n = 15, in the 15th level of the diagram we have that the first largest double-staircase has two horizontal steps, the second double-staircase has two steps, the third double-staircase has two steps, there are no steps in the fourth double-stairce and the fifth double-staircase has only one step, so the 15th row of triangle is [2, 2, 2, 0, 1]. %Y A339275 Column 1 is A040000. %Y A339275 Row sums give A335616. %Y A339275 Row n has length A003056(n). %Y A339275 Column k starts in row A000217(k). %Y A339275 The number of positive terms in row n is A001227(n). %Y A339275 Cf. A196020, A236104, A237048, A237270, A237591, A237593, A249351, A280850, A296508, A299484, A338721. %K A339275 nonn,tabf %O A339275 1,2 %A A339275 _Omar E. Pol_, Dec 01 2020