This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339276 #24 Jun 06 2025 12:14:27 %S A339276 1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A339276 2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A339276 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A339276 Nearest integer to the fourth root of n. %H A339276 Amiram Eldar, <a href="/A339276/b339276.txt">Table of n, a(n) for n = 1..10000</a> %H A339276 Jonathan M. Borwein and others, <a href="https://www.jstor.org/stable/2975334">Nearest Integer Zeta Functions, solution to Problem 10212</a>, The American Mathematical Monthly, Vol. 101, No. 6 (1994), pp. 579-580. %F A339276 Sum_{n>=1} 1/a(n)^s = 4*zeta(s-3) + zeta(s-1), for s>4 (Borwein, 1994). %e A339276 a(1) = 1 since 1^(1/4) = 1. %e A339276 a(6) = 2 since 6^(1/4) = 1.565... and its nearest integer is 2. %t A339276 Table[Round[Surd[n, 4]], {n, 1, 100}] %o A339276 (Python) %o A339276 from sympy import integer_nthroot %o A339276 def A339276(n): return (m:=integer_nthroot(n,4)[0])+((n<<4)>=((m<<1)+1)**4) # _Chai Wah Wu_, Jun 06 2025 %Y A339276 Cf. A000194, A105209, A255270. %K A339276 nonn,easy %O A339276 1,6 %A A339276 _Amiram Eldar_, Dec 13 2020