This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339285 #7 Nov 30 2020 21:40:32 %S A339285 1,1,1,1,2,1,1,4,5,1,1,6,14,8,1,1,9,34,39,14,1,1,12,68,132,94,20,1,1, %T A339285 16,126,370,447,202,30,1,1,20,212,887,1625,1275,398,40,1,1,25,340, %U A339285 1911,4955,5985,3284,730,55,1,1,30,515,3765,13133,22608,19245,7649,1266,70,1 %N A339285 Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n. %C A339285 Unoriented version of A339231. Equivalence is up to reversal of all parts combined in series. %F A339285 T(n,0) = T(n,n-1) = 1. %F A339285 T(n,1) = A002620(n). %F A339285 A339286(n) = Sum_{k=1..n-1} k*T(n,k). %e A339285 Triangle begins: %e A339285 1; %e A339285 1, 1; %e A339285 1, 2, 1; %e A339285 1, 4, 5, 1; %e A339285 1, 6, 14, 8, 1; %e A339285 1, 9, 34, 39, 14, 1; %e A339285 1, 12, 68, 132, 94, 20, 1; %e A339285 1, 16, 126, 370, 447, 202, 30, 1; %e A339285 1, 20, 212, 887, 1625, 1275, 398, 40, 1; %e A339285 1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1; %e A339285 ... %e A339285 T(4,0) = 1: (o|o|o|o). %e A339285 T(4,1) = 4: ((o|o)(o|o)), (o(o|o|o)), (o|o|oo), (o|o(o|o)). %e A339285 T(4,2) = 5: (oo(o|o)), (o(o|o)o), (o(o|oo)), (oo|oo), (o|ooo). %e A339285 T(4,3) = 1: (oooo). %o A339285 (PARI) %o A339285 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)} %o A339285 SubPwr(p,e)={my(vars=variables(p)); substvec(p, vars, [v^e|v<-vars])} %o A339285 BW(n, Z, W)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1+W*p)+Z)))); p} %o A339285 VertexWeighted(n, Z, W)={my(q=SubPwr(BW((n+1)\2, Z, W), 2), W2=SubPwr(W, 2), s=SubPwr(Z, 2)+W2*q^2/(1+W2*q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(W + W2*p); p=Z + x*Ser(EulerMT(Vec(t+(s-SubPwr(t, 2))/2))) - t); Vec(p+t-Z+BW(n, Z, W))/2} %o A339285 T(n)={[Vecrev(p)|p<-VertexWeighted(n, x, y)]} %o A339285 { my(A=T(12)); for(n=1, #A, print(A[n])) } %Y A339285 Row sums are A339225. %Y A339285 Cf. A002620, A339231, A339282, A339286. %K A339285 nonn,tabl %O A339285 1,5 %A A339285 _Andrew Howroyd_, Nov 30 2020