This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339303 #11 Dec 08 2020 15:24:31 %S A339303 1,1,1,2,1,1,4,3,2,1,9,6,6,2,1,20,16,15,8,3,1,48,37,41,22,12,3,1,115, %T A339303 96,106,69,38,15,4,1,286,239,284,194,124,52,20,4,1,719,622,750,564, %U A339303 377,189,77,24,5,1,1842,1607,2010,1584,1144,618,292,100,30,5,1 %N A339303 Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees. %C A339303 Linear forests (A339067) are considered up to reversal of the linear order. %C A339303 T(n,k) is the number of unlabeled trees on n nodes rooted at two indistinguishable nodes at distance k-1 from each other. %H A339303 Andrew Howroyd, <a href="/A339303/b339303.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A339303 G.f of column k: (r(x)^k + r(x)^(k mod 2)*r(x^2)^floor(k/2))/2 where r(x) is the g.f. of A000081. %e A339303 Triangle read by rows: %e A339303 1; %e A339303 1, 1; %e A339303 2, 1, 1; %e A339303 4, 3, 2, 1; %e A339303 9, 6, 6, 2, 1; %e A339303 20, 16, 15, 8, 3, 1; %e A339303 48, 37, 41, 22, 12, 3, 1; %e A339303 115, 96, 106, 69, 38, 15, 4, 1; %e A339303 286, 239, 284, 194, 124, 52, 20, 4, 1; %e A339303 719, 622, 750, 564, 377, 189, 77, 24, 5, 1; %e A339303 ... %o A339303 (PARI) \\ TreeGf is A000081 as g.f. %o A339303 TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} %o A339303 ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2} %o A339303 M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~)) %o A339303 { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) } %Y A339303 Columns 1..4 are A000081, A027852, A280788(n-3), A339302. %Y A339303 Row sums are A303840(n+2). %Y A339303 Row sums excluding the first column are A303833. %Y A339303 Cf. A339067. %K A339303 nonn,tabl %O A339303 1,4 %A A339303 _Andrew Howroyd_, Dec 04 2020