cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339304 Irregular triangle read by rows T(n,k) in which row n has length the partition number A000041(n-1) and columns k give the number of divisors function A000005, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

T(n,k) is also the number of divisors of A336811(n,k).
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.

Examples

			Triangle begins:
  1;
  2;
  2, 1;
  3, 2, 1;
  2, 2, 2, 1, 1;
  4, 3, 2, 2, 2, 1, 1;
  2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1;
  4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1;
  3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Number of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000005.
Row sums give A138137 (conjectured).

Programs

  • Mathematica
    A339304row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]];Array[A339304row,10] (* Paolo Xausa, Sep 01 2023 *)

Formula

a(m) = A000005(A336811(m)).
T(n,k) = A000005(A336811(n,k)).