This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339308 #9 Sep 08 2022 08:46:26 %S A339308 1,2,3,5,6,12,13,21,24,34,35,179,180,194,209,273,274,598,599,999,1020, %T A339308 1042,1043,14867,14872,14898,14925,15709,15710,42710,42711,43735, %U A339308 43768,43802,43837,323773,323774,323812,323851,387851,387852,461940,461941,463877 %N A339308 Partial sums of products of proper divisors of n (A007956). %F A339308 a(n) = Sum_{k=1..n} pod(k)/k = Sum_{k=1..n} (A007955(k)/k) = Sum_{k=1..n} A007956(k). %e A339308 a(6) = 12 = (1 + 1 + 1 + 2 + 1 + 6), where pod(n)/ n = 1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, ... %t A339308 popd[n_] := n^(DivisorSigma[0, n]/2 - 1); Accumulate @ Array[popd, 44] (* _Amiram Eldar_, Nov 30 2020 *) %o A339308 (Magma) [&+[&*Divisors(k) / k: k in [1..n]]: n in [1..100]] %o A339308 (PARI) a(n) = sum(k=1, n, vecprod(divisors(k))/k); \\ _Michel Marcus_, Nov 30 2020 %Y A339308 Cf. A007955 (pod(n)), A007956 (pod(n)/n), A092144 (partial products of A007956). %K A339308 nonn %O A339308 1,2 %A A339308 _Jaroslav Krizek_, Nov 29 2020