A339326 Denominators of s in rational solutions of s^4 + s^3 + s^2 + s + 1 = y^2 with |s| <= 1.
1, 1, 3, 11, 123, 808, 43993, 1404304, 113095273, 16258517264, 5907678749271, 1749162037068984, 2230703155726839733, 2430407134728632414424, 9811722627654286580946253, 28104484948123389151863529007, 447820184835469405718954028342863, 5093605667758828993168776807306887631
Offset: 1
Examples
The values of s in solutions (s, y) with |s| <= 1 begin -1, 0, 1/3, -8/11, -35/123, 627/808, -20965/43993, ...
Links
- Jeremy Tan, Table of n, a(n) for n = 1..50
- Jeremy Tan, Rigid pentagons and rational solutions of s^4+s^3+s^2+s+1=y^2, Mathematics Stack Exchange, Apr 1 2020.
- Gerard 't Hooft, Meccano Math I
Crossrefs
Cf. A339325 (numerators).
Programs
-
Mathematica
a[1] = 1; a[2] = 1; a[n_] := Module[{x = 4, y = 2, s, xr}, Do[s = (y-1) / (x-1); xr = s^2 - x + 4; {x, y} = {xr, s(x-xr) - y}, n-2]; s = (2y-x) / (4x-5); Denominator[MinimalBy[{s, 1/s}, Abs][[1]]]]; Table[a[k], {k, 20}] (* Jeremy Tan, Nov 15 2021 *)
-
PARI
a(n) = { [u,v] = ellmul(ellinit([0,-5,0,5,0]), [1,1], n); s = (2*v-u) / (4*u-5); if(abs(s)>1, s=1/s); denominator(s) }
Comments