cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339334 Triangle read by rows, 1 <= k <= n: T(n,k) is the sum of the minimal number of coins needed for amounts 1..n with an optimal greedy k-coin system of denominations.

This page as a plain text file.
%I A339334 #17 Aug 17 2023 12:54:39
%S A339334 1,3,2,6,4,3,10,6,5,4,15,9,7,6,5,21,11,9,8,7,6,28,14,11,10,9,8,7,36,
%T A339334 18,14,12,11,10,9,8,45,21,17,14,13,12,11,10,9,55,25,19,16,15,14,13,12,
%U A339334 11,10,66,30,22,19,17,16,15,14,13,12,11
%N A339334 Triangle read by rows, 1 <= k <= n: T(n,k) is the sum of the minimal number of coins needed for amounts 1..n with an optimal greedy k-coin system of denominations.
%C A339334 An optimal greedy k-coin system of denominations for amounts 1..n is a set of k coin denominations such that the sum of the number of coins needed for each of the amounts 1, ..., n is as small as possible when the coins are chosen greedily, i.e., the largest coin value less than or equal to the remaining amount is always chosen.
%H A339334 Pontus von Brömssen, <a href="/A339334/b339334.txt">Rows n = 1..40, flattened</a>
%H A339334 Jeffrey Shallit, <a href="http://dx.doi.org/10.1007/BF02984830">What this country needs is an 18¢ piece</a>, The Mathematical Intelligencer 25 (2003), issue 2, 20-23.
%H A339334 Jeffrey Shallit, <a href="https://cs.uwaterloo.ca/~shallit/Papers/change2.pdf">What this country needs is an 18¢ piece</a>.
%H A339334 Wikipedia, <a href="https://en.wikipedia.org/wiki/Change-making_problem">Change-making problem</a>.
%F A339334 T(n,k) = A339333(n,k) for all k when 1 <= n <= 7 or n = 10.
%F A339334 T(n,k) = A339333(n,k) for all n when k = 1 or k = 2.
%F A339334 T(n,k) >= A339333(n,k).
%F A339334 T(n,k) >= 2n - k, with equality if and only if n <= A014616(k).
%e A339334 Triangle begins:
%e A339334   n\k|  1  2  3  4  5  6  7  8  9 10 11 12
%e A339334   ---|-------------------------------------
%e A339334    1 |  1
%e A339334    2 |  3  2
%e A339334    3 |  6  4  3
%e A339334    4 | 10  6  5  4
%e A339334    5 | 15  9  7  6  5
%e A339334    6 | 21 11  9  8  7  6
%e A339334    7 | 28 14 11 10  9  8  7
%e A339334    8 | 36 18 14 12 11 10  9  8
%e A339334    9 | 45 21 17 14 13 12 11 10  9
%e A339334   10 | 55 25 19 16 15 14 13 12 11 10
%e A339334   11 | 66 30 22 19 17 16 15 14 13 12 11
%e A339334   12 | 78 33 25 22 19 18 17 16 15 14 13 12
%e A339334 For n = 8, one of the optimal greedy 3-coin systems is (1,2,4), with the representations
%e A339334   1 = 1
%e A339334   2 = 2
%e A339334   3 = 2 + 1
%e A339334   4 = 4
%e A339334   5 = 4 + 1
%e A339334   6 = 4 + 2
%e A339334   7 = 4 + 2 + 1
%e A339334   8 = 4 + 4
%e A339334 with a total of 14 = T(8,3) terms.
%e A339334 Shallit (2003) shows that T(99,k) is 4950, 900, 526, 410, 346, 313, 286 for k = 1..7.
%Y A339334 Cf. A014616, A339333.
%K A339334 nonn,tabl
%O A339334 1,2
%A A339334 _Pontus von Brömssen_, Nov 30 2020