A339343 Abundant pseudoperfect numbers k such that no subset of the nontrivial divisors {d|k : 1 < d < k} sums to k.
20, 88, 104, 272, 304, 350, 368, 464, 572, 650, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 3770, 4288, 4544, 4672, 5056, 5312, 5696, 5704, 5810, 6208, 6464, 6592, 6790, 6808, 6848, 6976, 7144, 7232, 7630, 7910, 8024, 8056, 9590, 9730, 10744, 11096, 11288, 13192
Offset: 1
Keywords
Examples
20 is a term since it is a pseudoperfect number, 20 = 1 + 4 + 5 + 10, and the set of nontrivial divisors of 20, {d|20 : 1 < d < 20} = {2, 4, 5, 10}, has no subset that sums to 20.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
psQ[n_] := DivisorSigma[1, n] > 2*n && Module[{d = Most@Divisors[n], x}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] == 0 ]; Select[Range[2000], psQ]
Comments