A339344 Lexicographically earliest sequence of odd primes such that the asymptotic density of the numbers which are divisible by at least one of these primes is 1/2.
3, 5, 17, 257, 65537, 4294967311, 1229782942255939601, 88962710886098567818446141338419231, 255302062200114858892457591448999891874349780170241684791167583265041
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12
Programs
-
Mathematica
s = {}; r = 1; p = 3; Do[AppendTo[s, p]; r *= 1 - 1/p; p = NextPrime[r/(r - 1/2)], {9}]; s
Formula
a(1) = 3, a(n) = nextprime(r(n-1)/(r(n-1) - 1/2)), where r(n) = Product_{k=1..n-1} 1 - 1/a(n).
Product_{n=>1} (1 - 1/a(n)) = 1/2.
Comments