cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339344 Lexicographically earliest sequence of odd primes such that the asymptotic density of the numbers which are divisible by at least one of these primes is 1/2.

Original entry on oeis.org

3, 5, 17, 257, 65537, 4294967311, 1229782942255939601, 88962710886098567818446141338419231, 255302062200114858892457591448999891874349780170241684791167583265041
Offset: 1

Views

Author

Amiram Eldar, Nov 30 2020

Keywords

Comments

Given a set of prime numbers P, finite or infinite, the set of numbers which are divisible by at least one of the primes in P has an asymptotic density Product_{p in P} (1 - 1/p). If P is finite, then this density is equal to 1/2 only when P = {2}. Otherwise, the density is 1/2 for infinitely many sets P. This sequence is the lexicographically earliest infinite sequence of such primes.
The first 5 terms are the Fermat primes (A019434).
a(10) = 7.455916... * 10^135 is too large to be included in the data section.

Crossrefs

Programs

  • Mathematica
    s = {}; r = 1; p = 3; Do[AppendTo[s, p]; r *= 1 - 1/p; p = NextPrime[r/(r - 1/2)], {9}]; s

Formula

a(1) = 3, a(n) = nextprime(r(n-1)/(r(n-1) - 1/2)), where r(n) = Product_{k=1..n-1} 1 - 1/a(n).
Product_{n=>1} (1 - 1/a(n)) = 1/2.