cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339354 G.f.: Sum_{k>=1} k^3 * x^(k*(k + 1)) / (1 - x^k).

This page as a plain text file.
%I A339354 #8 Dec 02 2020 03:19:01
%S A339354 0,1,1,1,1,9,1,9,1,9,1,36,1,9,28,9,1,36,1,73,28,9,1,100,1,9,28,73,1,
%T A339354 161,1,73,28,9,126,100,1,9,28,198,1,252,1,73,153,9,1,316,1,134,28,73,
%U A339354 1,252,126,416,28,9,1,441,1,9,371,73,126,252,1,73,28,477,1,828,1,9,153,73,344
%N A339354 G.f.: Sum_{k>=1} k^3 * x^(k*(k + 1)) / (1 - x^k).
%C A339354 Sum of cubes of divisors of n that are smaller than sqrt(n).
%H A339354 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%t A339354 nmax = 77; CoefficientList[Series[Sum[k^3 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t A339354 Table[DivisorSum[n, #^3 &, # < Sqrt[n] &], {n, 77}]
%o A339354 (PARI) a(n) = sumdiv(n, d, if (d^2 < n, d^3)); \\ _Michel Marcus_, Dec 02 2020
%Y A339354 Cf. A001158, A056924, A070039, A276634, A280375, A339353.
%K A339354 nonn
%O A339354 1,6
%A A339354 _Ilya Gutkovskiy_, Dec 01 2020