This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339368 #5 Dec 02 2020 01:01:18 %S A339368 1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,2,2,2,3,2,3,2,4,2, %T A339368 4,3,4,3,4,3,4,4,4,4,5,4,5,4,6,4,6,5,6,5,7,5,7,6,7,6,8,6,8,7,9,8,9,9, %U A339368 9,9,10,9,11,10,11,10,12,10,12,11,13,12,14,13,14,13 %N A339368 Number of partitions of n into an even number of cubes. %H A339368 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A339368 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A339368 G.f.: (1/2) * (Product_{k>=1} 1 / (1 - x^(k^3)) + Product_{k>=1} 1 / (1 + x^(k^3))). %F A339368 a(n) = (A003108(n) + A292560(n)) / 2. %e A339368 a(16) = 2 because we have [8, 8] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A339368 nmax = 85; CoefficientList[Series[(1/2) (Product[1/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}] + Product[1/(1 + x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}]), {x, 0, nmax}], x] %Y A339368 Cf. A000578, A003108, A027187, A292560, A339364, A339369. %K A339368 nonn %O A339368 0,17 %A A339368 _Ilya Gutkovskiy_, Dec 01 2020