cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339375 Number of partitions of n into an even number of distinct triangular numbers.

This page as a plain text file.
%I A339375 #6 Dec 02 2020 09:01:23
%S A339375 1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,2,0,1,0,1,1,1,0,1,2,0,1,0,2,0,3,1,0,
%T A339375 2,1,1,1,3,1,2,0,2,2,0,2,3,3,1,2,2,2,2,2,1,4,4,1,3,2,3,2,3,1,5,4,2,4,
%U A339375 2,4,4,3,2,6,4,3,4,5,2,3,6,5,6,5,4,5,5,4,5,6,4
%N A339375 Number of partitions of n into an even number of distinct triangular numbers.
%H A339375 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A339375 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F A339375 G.f.: (1/2) * (Product_{k>=1} (1 + x^(k*(k + 1)/2)) + Product_{k>=1} (1 - x^(k*(k + 1)/2))).
%F A339375 a(n) = (A024940(n) + A292518(n)) / 2.
%e A339375 a(31) = 3 because we have [28, 3], [21, 10] and [21, 6, 3, 1].
%t A339375 nmax = 90; CoefficientList[Series[(1/2) (Product[(1 + x^(k (k + 1)/2)), {k, 1, nmax}] + Product[(1 - x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A339375 Cf. A000217, A024940, A067661, A292518, A339366, A339373, A339374, A339376.
%K A339375 nonn
%O A339375 0,17
%A A339375 _Ilya Gutkovskiy_, Dec 02 2020