This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339390 #38 May 30 2022 08:07:04 %S A339390 1,7,116,2397,54845,1329644,33464881,864627351,22776683200, %T A339390 609024723535,16478750543705,450190397799036,12397538372467109, %U A339390 343712858468053319,9584085091610235280,268571959802603851989,7558772037473679862681,213548821612723752662596 %N A339390 Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2). %C A339390 The ratio of any two consecutive terms of this sequence a(n+1)/a(n) seems to grow asymptotically to ~30 as n increases (observation). %H A339390 Alois P. Heinz, <a href="/A339390/b339390.txt">Table of n, a(n) for n = 0..679</a> %F A339390 From _Alois P. Heinz_, Dec 05 2020: (Start) %F A339390 a(n) = [(x*y*z)^n] 1/(1-x-y-z-x*y*z-(x*y*z)^2). %F A339390 a(n) = ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) - (3*n-2)*(3*n-5)*a(n-2) - (45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3) + (3*n-2)*(3*n-11)*a(n-4) + (3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5) + (3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2) for n>=6. (End) %p A339390 b:= proc(l) option remember; `if`(l[3]=0, 1, %p A339390 add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h= %p A339390 [[1, 0$2], [0, 1, 0], [0$2, 1], [1$3], [2$3]])) %p A339390 end: %p A339390 a:= n-> b([n$3]): %p A339390 seq(a(n), n=0..20); # _Alois P. Heinz_, Dec 04 2020 %p A339390 # second Maple program: %p A339390 a:= proc(n) local t; 1/(1-x-y-z-x*y*z-(x*y*z)^2); %p A339390 for t in [x, y, z] do coeftayl(%, t=0, n) od %p A339390 end: %p A339390 seq(a(n), n=0..20); # _Alois P. Heinz_, Dec 05 2020 %p A339390 # third Maple program: %p A339390 a:= proc(n) option remember; `if`(n<6, [1, 7, 116, 2397, 54845, %p A339390 1329644][n+1], ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) -(3*n-2) %p A339390 *(3*n-5)*a(n-2) -(45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3) %p A339390 +(3*n-2)*(3*n-11)*a(n-4) +(3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5) %p A339390 +(3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2)) %p A339390 end: %p A339390 seq(a(n), n=0..20); # _Alois P. Heinz_, Dec 05 2020 %t A339390 b[l_] := b[l] = If[l[[3]] == 0, 1, %t A339390 Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l-h]], {h, %t A339390 {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {2, 2, 2}}}]]; %t A339390 a[n_] := b[{n, n, n}]; %t A339390 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 30 2022, after _Alois P. Heinz_ *) %Y A339390 Cf. A006480, A081798, A126086, A268550, A339565. %K A339390 nonn %O A339390 0,2 %A A339390 _William J. Wang_, Dec 02 2020