cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339390 Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2).

This page as a plain text file.
%I A339390 #38 May 30 2022 08:07:04
%S A339390 1,7,116,2397,54845,1329644,33464881,864627351,22776683200,
%T A339390 609024723535,16478750543705,450190397799036,12397538372467109,
%U A339390 343712858468053319,9584085091610235280,268571959802603851989,7558772037473679862681,213548821612723752662596
%N A339390 Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2).
%C A339390 The ratio of any two consecutive terms of this sequence a(n+1)/a(n) seems to grow asymptotically to ~30 as n increases (observation).
%H A339390 Alois P. Heinz, <a href="/A339390/b339390.txt">Table of n, a(n) for n = 0..679</a>
%F A339390 From _Alois P. Heinz_, Dec 05 2020: (Start)
%F A339390 a(n) = [(x*y*z)^n] 1/(1-x-y-z-x*y*z-(x*y*z)^2).
%F A339390 a(n) = ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) - (3*n-2)*(3*n-5)*a(n-2) - (45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3) + (3*n-2)*(3*n-11)*a(n-4) + (3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5) + (3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2) for n>=6. (End)
%p A339390 b:= proc(l) option remember; `if`(l[3]=0, 1,
%p A339390       add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
%p A339390       [[1, 0$2], [0, 1, 0], [0$2, 1], [1$3], [2$3]]))
%p A339390     end:
%p A339390 a:= n-> b([n$3]):
%p A339390 seq(a(n), n=0..20);  # _Alois P. Heinz_, Dec 04 2020
%p A339390 # second Maple program:
%p A339390 a:= proc(n) local t; 1/(1-x-y-z-x*y*z-(x*y*z)^2);
%p A339390       for t in [x, y, z] do coeftayl(%, t=0, n) od
%p A339390     end:
%p A339390 seq(a(n), n=0..20);  # _Alois P. Heinz_, Dec 05 2020
%p A339390 # third Maple program:
%p A339390 a:= proc(n) option remember; `if`(n<6, [1, 7, 116, 2397, 54845,
%p A339390       1329644][n+1], ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) -(3*n-2)
%p A339390       *(3*n-5)*a(n-2) -(45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3)
%p A339390       +(3*n-2)*(3*n-11)*a(n-4) +(3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5)
%p A339390       +(3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2))
%p A339390     end:
%p A339390 seq(a(n), n=0..20);  # _Alois P. Heinz_, Dec 05 2020
%t A339390 b[l_] := b[l] = If[l[[3]] == 0, 1,
%t A339390      Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l-h]], {h,
%t A339390      {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {2, 2, 2}}}]];
%t A339390 a[n_] := b[{n, n, n}];
%t A339390 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 30 2022, after _Alois P. Heinz_ *)
%Y A339390 Cf. A006480, A081798, A126086, A268550, A339565.
%K A339390 nonn
%O A339390 0,2
%A A339390 _William J. Wang_, Dec 02 2020