This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339406 #10 Nov 23 2021 09:43:41 %S A339406 1,0,1,1,3,2,5,5,10,9,16,17,29,28,44,48,73,76,110,121,172,185,253,282, %T A339406 381,417,549,616,802,889,1137,1279,1620,1810,2260,2549,3161,3544,4346, %U A339406 4906,5979,6720,8120,9164,11014,12392,14788,16682,19820,22297,26337,29682,34921,39267 %N A339406 Number of partitions of n into an even number of parts that are not multiples of 4. %H A339406 Cristina Ballantine and Mircea Merca, <a href="https://arxiv.org/abs/2111.10702">4-Regular partitions and the pod function</a>, arXiv:2111.10702 [math.CO], 2021. %H A339406 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A339406 G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) + Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)). %F A339406 a(n) = (A001935(n) + A261734(n)) / 2. %e A339406 a(6) = 5 because we have [5, 1], [3, 3], [3, 1, 1, 1], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1]. %p A339406 b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0, %p A339406 b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t)))) %p A339406 end: %p A339406 a:= n-> b(n$2, 1): %p A339406 seq(a(n), n=0..55); # _Alois P. Heinz_, Dec 03 2020 %t A339406 nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] + Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] %Y A339406 Cf. A001935, A027187, A042968, A261734, A339404, A339405, A339407. %K A339406 nonn %O A339406 0,5 %A A339406 _Ilya Gutkovskiy_, Dec 03 2020