This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339415 #11 Dec 04 2020 01:03:13 %S A339415 0,0,2,4,8,0,36,60,4,8,16,0,36,72,84,4,16,20,32,36,72,108,132,54,90, %T A339415 150,2,14,22,26,34,46,54,90,126,162,174,10,14,34,46,50,62,54,90,126, %U A339415 198,210,0,144,180,216,240,16,20,40,44,56,64,76,92,14,26,34,50,70,86,94,98,14,98,182,266 %N A339415 Table read by rows. If p=A098058(n+1), q is the next prime after p, and r=(p+q)/2, row n consists of the areas (in increasing order) of triangles with vertices (p,p), (s,r-s), (q,q), where s and r-s are prime. %C A339415 If p = A098058(n+1), r is an even number >=4, and Goldbach's conjecture implies that r is the sum of primes s and r-s. %C A339415 By symmetry, s and r-s produce the same area; only one of these is included in the table. %C A339415 The row includes 0 if and only if r/2 is prime, i.e. p is in A339414. %H A339415 Robert Israel, <a href="/A339415/b339415.txt">Table of n, a(n) for n = 1..10020</a> (rows 1 to 261, flattened) %F A339415 The area of the triangle with vertices (p,p), (s,r-s), (q,q) is (q-p)*|p+q-4*s|/4. %e A339415 With p=A098058(5)=17, q=19, r=18, the values of s are 5, 7, 11, 13, corresponding to areas 4, 8, 8, 4 respectively, so row 4 is (4,8). %e A339415 The first 10 rows are %e A339415 0 %e A339415 0 %e A339415 2 %e A339415 4, 8 %e A339415 0, 36, 60 %e A339415 4, 8, 16 %e A339415 0, 36, 72, 84 %e A339415 4, 16, 20, 32 %e A339415 36, 72, 108, 132 %e A339415 54, 90, 150 %p A339415 R:= 0: count:= 1: q:= 5: nrows:= 1: %p A339415 printf("0\n"): %p A339415 while nrows < 20 do %p A339415 p:= q; q:= nextprime(q); %p A339415 if p+q mod 4 <> 0 then next fi; %p A339415 nrows:= nrows+1; %p A339415 r:= (p+q)/2; %p A339415 T:= select(t -> isprime(t) and isprime(r-t), [$ceil(r/2)..r]); %p A339415 count:= count + nops(T); %p A339415 V:= map(t -> abs((p-q)*(p+q-4*t)/4), T); %p A339415 R:= R, op(V); %p A339415 printf("%a\n",V); %p A339415 od: %Y A339415 Cf. A098058, A339414. %K A339415 nonn,tabf,look %O A339415 1,3 %A A339415 _J. M. Bergot_ and _Robert Israel_, Dec 03 2020