This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339417 #7 Dec 03 2020 18:14:36 %S A339417 0,1,0,2,0,4,1,9,3,19,12,41,33,91,92,203,238,466,602,1080,1493,2536, %T A339417 3661,6001,8902,14278,21554,34094,52013,81602,125297,195582,301475, %U A339417 469193,724881,1126161,1742206,2703888,4186276,6493192,10057553,15594636,24161364,37455851 %N A339417 Number of compositions (ordered partitions) of n into an odd number of triangular numbers. %H A339417 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A339417 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %F A339417 G.f.: (1/2) * (1 / (1 - Sum_{k>=1} x^(k*(k + 1)/2)) - 1 / Sum_{k>=0} x^(k*(k + 1)/2)). %F A339417 a(n) = (A023361(n) - A106507(n)) / 2. %F A339417 a(n) = -Sum_{k=0..n-1} A023361(k) * A106507(n-k). %e A339417 a(8) = 3 because we have [6, 1, 1], [1, 6, 1] and [1, 1, 6]. %p A339417 b:= proc(n, t) option remember; local r, f, g; %p A339417 if n=0 then t else r, f, g:=$0..2; while f<=n %p A339417 do r, f, g:= r+b(n-f, 1-t), f+g, g+1 od; r fi %p A339417 end: %p A339417 a:= n-> b(n, 0): %p A339417 seq(a(n), n=0..50); # _Alois P. Heinz_, Dec 03 2020 %t A339417 nmax = 43; CoefficientList[Series[(1/2) (1/(1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}]) - 1/Sum[x^(k (k + 1)/2), {k, 0, nmax}]), {x, 0, nmax}], x] %Y A339417 Cf. A000217, A023361, A106507, A166444, A339374, A339416. %K A339417 nonn %O A339417 0,4 %A A339417 _Ilya Gutkovskiy_, Dec 03 2020