This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339419 #9 Dec 11 2020 08:48:04 %S A339419 0,1,0,1,1,1,3,1,5,5,7,14,10,27,27,44,69,73,144,158,260,366,466,775, %T A339419 940,1490,2031,2803,4264,5551,8460,11525,16399,23864,32435,47981, %U A339419 66005,94701,135072,187999,272678,379095,543626,769490,1083788,1553661,2177681,3113333 %N A339419 Number of compositions (ordered partitions) of n into an odd number of squares. %H A339419 Alois P. Heinz, <a href="/A339419/b339419.txt">Table of n, a(n) for n = 0..5000</a> %H A339419 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A339419 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A339419 G.f.: 1 / (3 - theta_3(x)) - 1 / (1 + theta_3(x)), where theta_3() is the Jacobi theta function. %F A339419 a(n) = (A006456(n) - A317665(n)) / 2. %F A339419 a(n) = -Sum_{k=0..n-1} A006456(k) * A317665(n-k). %e A339419 a(9) = 5 because we have [9], [4, 4, 1], [4, 1, 4], [1, 4, 4] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. %p A339419 b:= proc(n, t) option remember; local r, f, g; %p A339419 if n=0 then t else r, f, g:=$0..2; while f<=n %p A339419 do r, f, g:= r+b(n-f, 1-t), f+2*g-1, g+1 od; r fi %p A339419 end: %p A339419 a:= n-> b(n, 0): %p A339419 seq(a(n), n=0..50); # _Alois P. Heinz_, Dec 03 2020 %t A339419 nmax = 47; CoefficientList[Series[1/(3 - EllipticTheta[3, 0, x]) - 1/(1 + EllipticTheta[3, 0, x]), {x, 0, nmax}], x] %Y A339419 Cf. A000290, A006456, A166444, A317665, A339365, A339417, A339418. %K A339419 nonn %O A339419 0,7 %A A339419 _Ilya Gutkovskiy_, Dec 03 2020