cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339437 Numbers k such that A339436(k) is prime.

Original entry on oeis.org

6, 10, 22, 34, 58, 82, 118, 142, 202, 214, 216, 252, 274, 298, 330, 358, 382, 390, 394, 454, 468, 478, 490, 538, 562, 588, 622, 684, 690, 694, 726, 798, 838, 858, 862, 870, 910, 922, 924, 1042, 1044, 1122, 1138, 1176, 1198, 1210, 1224, 1234, 1254, 1282, 1290, 1318, 1332, 1440, 1482, 1518, 1540
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 04 2020

Keywords

Comments

All terms are even.

Examples

			a(15)=330 is a member because 330 = 2*3*5*11 and A339436(330) = 2 + 2*3 + 2*3*5 + 3*5*11 + 5*11 + 11 = 269 is prime.
		

Crossrefs

Includes A108605. Disjoint from A014612.
Cf. A339436.

Programs

  • Maple
    A339436:= proc(n) local L,m;
      L:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(L);
      add(mul(L[i],i=1..j)+mul(L[i],i=j+1..m),j=1..m-1)
    end proc:
    select(isprime @ A339436, [seq(i,i=2 .. 10000, 2)]);

A339438 Composite numbers k such that k + A339436(k) is prime.

Original entry on oeis.org

6, 10, 14, 15, 20, 21, 24, 26, 33, 34, 35, 38, 40, 44, 46, 51, 52, 55, 57, 58, 63, 65, 74, 76, 85, 86, 88, 90, 92, 93, 96, 111, 117, 118, 123, 124, 135, 136, 141, 143, 145, 147, 150, 153, 155, 158, 161, 164, 166, 172, 177, 178, 180, 184, 185, 194, 198, 201, 203, 205, 206, 207, 208, 209, 215, 221
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 04 2020

Keywords

Comments

If n = p_1 * ... * p_m with primes p_i <= p_{i+1}, then p_1 + p_1*p_2 + ... + p_1*p_2*...*p_m + p2*...*p_m + ... + p_m is prime.

Examples

			a(5)=20 is a term because 20=2*2*5 and 2+2*2+2*2*5+2*5+5 = 41 is prime.
		

Crossrefs

Includes A088709.

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(L);
      if m=1 then return false fi;
      isprime(n + add(mul(L[i],i=1..j)+mul(L[i],i=j+1..m),j=1..m-1))
    end proc:
    select(filter, [$4..300]);
Showing 1-2 of 2 results.