cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339439 Number of n-digit numbers (in base 10) that are divisible by each of their nonzero digits.

This page as a plain text file.
%I A339439 #18 Dec 27 2020 19:54:23
%S A339439 1,9,23,105,614,3826,25373,177247,1288440,9679469,74720569,590162149,
%T A339439 4753928352,38956270302,324107031605,2733414294539,23338817531394,
%U A339439 201537057920381,1758534957457627,15493080163102862,137729286979112861,1234692470638216407,11155826203456047704
%N A339439 Number of n-digit numbers (in base 10) that are divisible by each of their nonzero digits.
%e A339439 a(2) = 23: 10, 11, 12, 15, 20, 22, 24, 30, 33, 36, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99.
%o A339439 (PARI)
%o A339439 C(digs,n,m)={my(v=vector(m)); v[1]=1; for(i=1, n, v=vector(m, j, sum(k=1, #digs, my(r=10^(i-1)*digs[k]%m); v[1+(j-1-r)%m]))); v}
%o A339439 a(n)={if(n==1, 10, my(m=lcm([2..9])); sumdiv(m, d, my(digs=select(t->t<=1||d%t==0, [0..9])); my(v=C(digs,n,m)-C(digs,n-1,m)); sum(i=1, m/d, if(gcd(m/d,i)==1, v[1+i*d%m]))))} \\ _Andrew Howroyd_, Dec 04 2020
%Y A339439 Cf. A002796.
%K A339439 nonn,base
%O A339439 0,2
%A A339439 _Phuc H. G. Trinh_, Dec 04 2020
%E A339439 Terms a(18) and beyond from _Andrew Howroyd_, Dec 04 2020