cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339443 Pairwise listing of the partitions of k into two parts (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 2,3,... .

This page as a plain text file.
%I A339443 #18 Sep 18 2021 21:54:49
%S A339443 1,1,2,1,3,1,2,2,4,1,3,2,5,1,4,2,3,3,6,1,5,2,4,3,7,1,6,2,5,3,4,4,8,1,
%T A339443 7,2,6,3,5,4,9,1,8,2,7,3,6,4,5,5,10,1,9,2,8,3,7,4,6,5,11,1,10,2,9,3,8,
%U A339443 4,7,5,6,6,12,1,11,2,10,3,9,4,8,5,7,6,13,1,12,2,11
%N A339443 Pairwise listing of the partitions of k into two parts (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 2,3,... .
%H A339443 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A339443 a(n) = (1-(-1)^n)*(1+floor(sqrt(2*n-1)))/2-(((-1)^n-2*n-1)/2 + 2*Sum_{k=1..-1+floor(sqrt(2*n-2-(-1)^n))} floor((k+1)/2))*(-1)^n/2.
%F A339443 a(n) = A339399(A103889(n)). - _Wesley Ivan Hurt_, May 09 2021
%e A339443                                                                      [9,1]
%e A339443                                                      [7,1]   [8,1]   [8,2]
%e A339443                                      [5,1]   [6,1]   [6,2]   [7,2]   [7,3]
%e A339443                      [3,1]   [4,1]   [4,2]   [5,2]   [5,3]   [6,3]   [6,4]
%e A339443      [1,1]   [2,1]   [2,2]   [3,2]   [3,3]   [4,3]   [4,4]   [5,4]   [5,5]
%e A339443    k   2       3       4       5       6       7       8       9      10
%e A339443   --------------------------------------------------------------------------
%e A339443    k   Nonincreasing partitions of k
%e A339443   --------------------------------------------------------------------------
%e A339443    2   1,1
%e A339443    3   2,1
%e A339443    4   3,1,2,2
%e A339443    5   4,1,3,2
%e A339443    6   5,1,4,2,3,3
%e A339443    7   6,1,5,2,4,3
%e A339443    8   7,1,6,2,5,3,4,4
%e A339443    9   8,1,7,2,6,3,5,4
%e A339443   10   9,1,8,2,7,3,6,4,5,5
%e A339443   ...
%t A339443 Table[(1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}]
%Y A339443 Cf. A103889, A339399.
%Y A339443 Bisections: A199474, A122197.
%K A339443 nonn
%O A339443 1,3
%A A339443 _Wesley Ivan Hurt_, Dec 05 2020