This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339443 #18 Sep 18 2021 21:54:49 %S A339443 1,1,2,1,3,1,2,2,4,1,3,2,5,1,4,2,3,3,6,1,5,2,4,3,7,1,6,2,5,3,4,4,8,1, %T A339443 7,2,6,3,5,4,9,1,8,2,7,3,6,4,5,5,10,1,9,2,8,3,7,4,6,5,11,1,10,2,9,3,8, %U A339443 4,7,5,6,6,12,1,11,2,10,3,9,4,8,5,7,6,13,1,12,2,11 %N A339443 Pairwise listing of the partitions of k into two parts (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 2,3,... . %H A339443 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A339443 a(n) = (1-(-1)^n)*(1+floor(sqrt(2*n-1)))/2-(((-1)^n-2*n-1)/2 + 2*Sum_{k=1..-1+floor(sqrt(2*n-2-(-1)^n))} floor((k+1)/2))*(-1)^n/2. %F A339443 a(n) = A339399(A103889(n)). - _Wesley Ivan Hurt_, May 09 2021 %e A339443 [9,1] %e A339443 [7,1] [8,1] [8,2] %e A339443 [5,1] [6,1] [6,2] [7,2] [7,3] %e A339443 [3,1] [4,1] [4,2] [5,2] [5,3] [6,3] [6,4] %e A339443 [1,1] [2,1] [2,2] [3,2] [3,3] [4,3] [4,4] [5,4] [5,5] %e A339443 k 2 3 4 5 6 7 8 9 10 %e A339443 -------------------------------------------------------------------------- %e A339443 k Nonincreasing partitions of k %e A339443 -------------------------------------------------------------------------- %e A339443 2 1,1 %e A339443 3 2,1 %e A339443 4 3,1,2,2 %e A339443 5 4,1,3,2 %e A339443 6 5,1,4,2,3,3 %e A339443 7 6,1,5,2,4,3 %e A339443 8 7,1,6,2,5,3,4,4 %e A339443 9 8,1,7,2,6,3,5,4 %e A339443 10 9,1,8,2,7,3,6,4,5,5 %e A339443 ... %t A339443 Table[(1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}] %Y A339443 Cf. A103889, A339399. %Y A339443 Bisections: A199474, A122197. %K A339443 nonn %O A339443 1,3 %A A339443 _Wesley Ivan Hurt_, Dec 05 2020