This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339457 #27 Jan 01 2022 09:53:38 %S A339457 1,5,0,3,9,2,8,5,2,4,0,6,9,5,2,0,6,3,3,5,2,7,6,8,9,0,6,7,8,9,7,5,8,3, %T A339457 1,9,9,1,9,0,7,3,8,8,4,9,5,8,1,1,3,8,4,2,9,0,0,2,9,9,9,3,5,0,6,5,7,6, %U A339457 5,9,5,4,7,5,6,1,6,3,0,5,7,6,4,3,1,7,1,0,1,8,9,0,8,0,8,8,6,5,2,2,4,6,8,7,4,0,1,3,0 %N A339457 Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1. %C A339457 Assuming Cramer's conjecture on prime gaps, it can be proved that there exists at least one constant d such that all floor(2^(n^d)) are primes for n>=1 as large as required. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738... %C A339457 Algorithm to generate the smallest constant d and the associated prime number sequence a(n)=floor(2^(n^d)). %C A339457 0. n=1, a(1)=2, d=1 %C A339457 1. n=n+1 %C A339457 2. b=floor(2^(n^d)) %C A339457 3. p=smpr(b) (smallest prime >= b) %C A339457 4. If p=b, then a(n)=p, go to 1. %C A339457 5. d=log(log(p)/log(2))/log(n) %C A339457 6. a(n)=p %C A339457 7. k=1 %C A339457 8. b=floor(2^(k^d)) %C A339457 9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5. %C A339457 10. If b is prime, then a(k)=b %C A339457 11. If k<n-1 then k=k+1, go to 8. %C A339457 12. go to 1. %C A339457 112 decimal digits of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits. %H A339457 Bernard Montaron, <a href="https://arxiv.org/abs/2011.14653">Exponential prime sequences</a>, arXiv:2011.14653 [math.NT], 2020. %e A339457 1.5039285240695206335276890678975831991907388495811384290029993506576595475616... %o A339457 (PARI) A339457(n=63, prec=200) = { %o A339457 \\ returns the list of the first digits of the constant. %o A339457 \\ the number of digits increases faster than n %o A339457 my(curprec=default(realprecision)); %o A339457 default(realprecision, max(prec,curprec)); %o A339457 my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); %o A339457 for(j=1, n-1, %o A339457 b=floor(c^(j^d)); %o A339457 until(ok, %o A339457 p=smpr(b); %o A339457 ok = 1; %o A339457 listput(a,p,j); %o A339457 if(p!=b, %o A339457 d=log(log(p)/log(c))/log(j); %o A339457 for(k=1,j-2, %o A339457 b=floor(c^(k^d)); %o A339457 if(b!=a[k], %o A339457 ok=0; %o A339457 j=k; %o A339457 break; %o A339457 ); %o A339457 ); %o A339457 ); %o A339457 ); %o A339457 ); %o A339457 my(p=floor(-log(d-log(log(a[n-2])/log(c))/log(n-2))/log(10)) ); %o A339457 default(realprecision, curprec); %o A339457 return(digits(floor(d*10^p),10)); %o A339457 } \\ _François Marques_, Dec 08 2020 %Y A339457 Cf. A339459, A339458, A338613, A338837, A338850. %K A339457 nonn,cons %O A339457 1,2 %A A339457 _Bernard Montaron_, Dec 06 2020