This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339458 #11 Jan 11 2021 23:35:42 %S A339458 1,1,1,63,7,3,2,2,1,1,1,250,2,1,2,1,2,3,1,4,1,1,3,1,1,2,1,1,1,2,1,2,2, %T A339458 1,1,6,7,1,1,1,6,1,1,9,9,2,1,6,2,5,1,25,1,1,1,2,18,1,3,5,1,1,5,1,3,1, %U A339458 1,4,1,1,3,2,2,3,40,2,3,8,2,2,25,1,5,2,1,1,3,2,2,1,10,1,1,2,1,2,1,1,2,1,3,2,420,2,2,1 %N A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1. %e A339458 1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522... %e A339458 The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999... %o A339458 (PARI) A339458(n=63, prec=200)={ %o A339458 my(curprec=default(realprecision)); %o A339458 default(realprecision, max(prec,curprec)); %o A339458 my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); %o A339458 for(j=1, n-1, %o A339458 b=floor(c^(j^d)); %o A339458 until(ok, %o A339458 p=smpr(b); %o A339458 ok = 1; %o A339458 listput(a,p,j); %o A339458 if(p!=b, %o A339458 d=log(log(p)/log(c))/log(j); %o A339458 for(k=1,j-2, %o A339458 b=floor(c^(k^d)); %o A339458 if(b!=a[k], %o A339458 ok=0; %o A339458 j=k; %o A339458 break; %o A339458 ); %o A339458 ); %o A339458 ); %o A339458 ); %o A339458 ); %o A339458 default(realprecision, curprec); %o A339458 return(contfrac(d)); %o A339458 } \\ _François Marques_, Dec 08 2020 %Y A339458 Cf. A339459, A339457, A338613, A338837, A338850. %K A339458 nonn,cofr %O A339458 1,4 %A A339458 _Bernard Montaron_, Dec 06 2020