This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339459 #25 Jul 19 2021 01:23:18 %S A339459 2,7,37,263,2437,28541,414893,7368913,157859813,4035572951, %T A339459 122006926709,4328504865941,178988464493359,8575347401843113, %U A339459 473485756611713633,29985730185033339911,2168685169398896331137,178419507110725228550743 %N A339459 Prime numbers a(n) = floor(2^(n^d)) for all n>=1 where d=1.5039285240... is the constant defined at A339457. %C A339459 Assuming Cramer's conjecture on prime gaps is true, it can be proved that there exists at least one constant d such that all terms of the sequence are primes. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738... %C A339459 Algorithm to generate the smallest constant d and the associated prime number sequence a(n) = floor(2^(n^d)). %C A339459 0. n=1, a(1)=2, d=1 %C A339459 1. n=n+1 %C A339459 2. b=floor(2^(n^d)) %C A339459 3. p=smpr(b) (smallest prime >= b) %C A339459 4. If p=b, then a(n)=p, go to 1. %C A339459 5. d=log(log(p)/log(2))/log(n) %C A339459 6. a(n)=p %C A339459 7. k=1 %C A339459 8. b=floor(2^(k^d)) %C A339459 9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5. %C A339459 10. If b is prime then a(k)=b %C A339459 11. If k<n-1, then k=k+1, go to 8. %C A339459 12. go to 1. %C A339459 112 decimals of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits. %H A339459 Bernard Montaron, <a href="https://arxiv.org/abs/2011.14653">Exponential prime sequences</a>, arXiv:2011.14653 [math.NT], 2020. %F A339459 a(n) = floor(2^(n^d)) where d=1.5039285240... %e A339459 This example illustrates the importance of doing full precision calculations: a(19) = floor(2^(19^d)) = floor(2^83.7826351429215150692195114432) = 16637432012996855576590853. Here, the precision required on the exponent of 2 is 28 decimals in order to obtain the correct value for a(19). And the precision required keeps increasing with the index value n. %o A339459 (PARI) A339459(n=30, prec=100) = { %o A339459 \\ if precision is large enough, returns the list of first n terms of the sequence %o A339459 my(curprec=default(realprecision)); %o A339459 default(realprecision, max(prec,curprec)); %o A339459 my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); %o A339459 for(j=1, n-1, %o A339459 b=floor(c^(j^d)); %o A339459 until(ok, %o A339459 p=smpr(b); %o A339459 ok = 1; %o A339459 listput(a,p,j); %o A339459 if(p!=b, %o A339459 d=log(log(p)/log(c))/log(j); %o A339459 for(k=1,j-2, %o A339459 b=floor(c^(k^d)); %o A339459 if(b!=a[k], %o A339459 ok=0; %o A339459 j=k; %o A339459 break; %o A339459 ); %o A339459 ); %o A339459 ); %o A339459 ); %o A339459 ); %o A339459 default(realprecision, curprec); %o A339459 return(a); %o A339459 } \\ _François Marques_, Dec 08 2020 %Y A339459 Cf. A339457, A339458, A338613, A338837, A338850. %K A339459 nonn %O A339459 1,1 %A A339459 _Bernard Montaron_, Dec 06 2020