A339463 Primes p such that (p-1)/gpf(p-1) = 2^q * 5^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.
71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 521, 701, 761, 821, 881, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1901, 1931, 2081, 2111, 2141, 2351, 2411, 2441, 2621, 2711, 2741, 2801, 3041, 3251, 3371
Offset: 1
Keywords
Examples
41 is prime, 40/5 = 8 = 2^3, hence 41 is not a term. 101 is prime, 100/5 = 20 = 2^2 * 5, hence 101 is a term. 491 is prime, 490/7 = 70 = 2 * 5 * 7, hence 491 is not a term. 521 is prime, 520/13 = 40 = 2^3 * 5, hence 521 is a term.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 5}: select(is_a, [$5..3371]); # Peter Luschny, Dec 13 2020
-
Mathematica
q[n_] := Divisible[n, 10] && ((PrimeQ[(r = n/2^IntegerExponent[n, 2]/5^(e = IntegerExponent[n, 5]))] && r > 5) || (r == 1 && e > 1)); Select[Range[3500], PrimeQ[#] && q[# - 1] &] (* Amiram Eldar, Dec 13 2020 *)
Comments