This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339470 #29 Nov 21 2024 09:26:33 %S A339470 2,3,1,5,6,4,8,2,0,5,7,7,1,9,4,3,9,2,4,9,6,9,2,9,0,7,1,2,3,1,5,3,2,7, %T A339470 6,0,0,1,6,4,0,6,3,5,0,0,4,9,2,9,8,8,7,0,8,1,5,3,0,1,2,2,8,6,8,9,7,9, %U A339470 5,3,4,5,5,6,6,9,6,1,8,1,2,9,8,5,0,5,4 %N A339470 Decimal expansion of log(phi)^2, where phi is the golden ratio (A002390^2). %H A339470 Travis Sherman, <a href="https://www.math.arizona.edu/~rta/001/sherman.travis/series.pdf">Summation of Glaisher- and Apéry-like Series</a>, University of Arizona, 2000. %H A339470 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A339470 Equals arcsinh(1/2)^2 = A002390^2. %F A339470 Equals (1/2)*Sum_{k>=1} ((k!)^2*(-1)^(k+1))/((2*k)!*k^2) = A086467/2. %F A339470 Equals (1/3)*(zeta(2) - Sum_{k>=1} ((k!)^2*(-1)^k)/((2*k)!*(2*k+1)^2)). %F A339470 Equals (1/2)*Sum_{k>=1} (-1)^(k+1)/A002736(k). %e A339470 0.2315648205771943924969290712315327600164063500492988708153012286... %t A339470 RealDigits[Log[GoldenRatio]^2, 10, 100][[1]] (* _Amiram Eldar_, Dec 06 2020 *) %o A339470 (PARI) asinh(1/2)^2 \\ _Michel Marcus_, Dec 06 2020 %Y A339470 Cf. A002390, A001622, A086467. %K A339470 nonn,cons %O A339470 0,1 %A A339470 _Robert Bilinski_, Dec 06 2020