cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339482 a(n) = Sum_{d|n} d^(n-d+1) * binomial(d+n/d-2, d-1).

This page as a plain text file.
%I A339482 #17 Apr 25 2021 02:22:53
%S A339482 1,3,4,21,6,346,8,4617,13132,80696,12,4903847,14,40410966,756336736,
%T A339482 2416181265,18,306560794753,20,6941876836216,132964265599502,
%U A339482 34522735212626,24,116720277621236637,33378601074218776,51185893450298400,60788365423272068968
%N A339482 a(n) = Sum_{d|n} d^(n-d+1) * binomial(d+n/d-2, d-1).
%F A339482 G.f.: Sum_{k >= 1} k * (x/(1 - (k * x)^k))^k.
%F A339482 If p is prime, a(p) = 1 + p.
%t A339482 a[n_] := DivisorSum[n, #^(n - # + 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* _Amiram Eldar_, Apr 25 2021 *)
%o A339482 (PARI) a(n) = sumdiv(n, d, d^(n-d+1)*binomial(d+n/d-2, d-1));
%o A339482 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*(x/(1-(k*x)^k))^k))
%Y A339482 Cf. A157019, A157020, A324158, A324159, A338661, A339481, A339712, A343573.
%K A339482 nonn
%O A339482 1,2
%A A339482 _Seiichi Manyama_, Apr 24 2021