This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339483 #35 Aug 21 2025 09:56:02 %S A339483 0,9,75,294,810,1815,3549,6300,10404,16245,24255,34914,48750,66339, %T A339483 88305,115320,148104,187425,234099,288990,353010,427119,512325,609684, %U A339483 720300,845325,985959,1143450,1319094,1514235,1730265,1968624,2230800,2518329,2832795 %N A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n. %C A339483 The only regular polygons that can be drawn with vertices on the centered hexagonal grid are equilateral triangles and regular hexagons. %H A339483 Peter Kagey, <a href="/A339483/b339483.txt">Table of n, a(n) for n = 0..10000</a> %H A339483 Burkard Polster, <a href="https://youtu.be/sDfzCIWpS7Q">What does this prove? Some of the most gorgeous visual "shrink" proofs ever invented</a>, Mathologer video (2020). %H A339483 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A339483 a(n) = A000537(n) + A008893(n). %F A339483 a(n) = (1/2)*(n+1)*n*(2*n+1)^2. %F A339483 a(n) = 3*A180324(n). %F A339483 Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - _Amiram Eldar_, Jun 20 2025 %F A339483 From _Elmo R. Oliveira_, Aug 20 2025: (Start) %F A339483 G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5. %F A339483 E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2. %F A339483 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A339483 a(n) = A185096(n)/4 = A322677(n)/32. (End) %e A339483 There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles. %e A339483 The nine hexagons are: %e A339483 * . * . * . * * . %e A339483 . . . . * . . * * . * . %e A339483 * . . . * . . . . . . * * . . %e A339483 . . . . * . . * . . . . %e A339483 * . * . * . . . . %e A339483 1 1 7 %e A339483 which are marked with the number of ways to draw the hexagons up to translation. %e A339483 The 66 equilateral triangles are: %e A339483 * . . * . . * . . * . * * . . . . . %e A339483 * * . . . . * . . . . . . . . . . . . . * . . * %e A339483 . . . . . . * . . . . . . * . . . * . . . . . . * . . . . . %e A339483 . . . . . . . . * . . . . . . . . . . . . . . . %e A339483 . . . . . . . . . . . . * . . . * . %e A339483 24 14 12 12 2 2 %e A339483 which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon. %t A339483 a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* _Amiram Eldar_, Jun 20 2025 *) %Y A339483 Cf. A000537 (regular hexagons), A008893 (equilateral triangles). %Y A339483 Cf. A338323 (cubic grid). %Y A339483 Cf. A003215, A180324, A185096, A322677, A348670. %K A339483 nonn,easy %O A339483 0,2 %A A339483 _Peter Kagey_, Dec 06 2020