This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339489 #7 Jan 01 2021 07:21:20 %S A339489 1,2,2,6,2,3,24,8,3,8,120,8,3,8,5,720,48,18,8,5,36,5040,48,18,8,5,36, %T A339489 7,40320,384,18,64,5,36,7,64,362880,384,162,64,5,36,7,64,27,3628800, %U A339489 3840,162,64,50,36,7,64,27,100,39916800,3840,162,64,50,36,7,64,27,100,11 %N A339489 T(n, k) = Product(divisors(k) union {k*j : j = 2..floor(n/k)}). Triangle read by rows. %C A339489 For the connection with paths in the divisor graph of {1,...,n} see the comment in A339492. %e A339489 The triangle starts: %e A339489 [1] 1; %e A339489 [2] 2, 2; %e A339489 [3] 6, 2, 3; %e A339489 [4] 24, 8, 3, 8; %e A339489 [5] 120, 8, 3, 8, 5; %e A339489 [6] 720, 48, 18, 8, 5, 36; %e A339489 [7] 5040, 48, 18, 8, 5, 36, 7; %e A339489 [8] 40320, 384, 18, 64, 5, 36, 7, 64; %e A339489 [9] 362880, 384, 162, 64, 5, 36, 7, 64, 27; %e A339489 [10] 3628800, 3840, 162, 64, 50, 36, 7, 64, 27, 100; %p A339489 t := (n, k) -> NumberTheory:-Divisors(k) union {seq(k*j, j=2..n/k)}: %p A339489 T := (n, k) -> mul(j, j = t(n, k)): %p A339489 for n from 1 to 10 do seq(T(n, k), k=1..n) od; %Y A339489 T(n, 1) = A000142(n), T(n, n) = A007955(n). %Y A339489 Cf. A339491, A339492, A339496. %K A339489 nonn,tabl %O A339489 1,2 %A A339489 _Peter Luschny_, Dec 31 2020