This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339491 #16 Mar 14 2021 20:37:24 %S A339491 1,1,2,2,1,3,2,4,1,3,2,4,1,3,3,6,2,4,1,5,3,6,2,4,1,5,3,6,2,4,8,1,5,4, %T A339491 8,2,6,3,9,1,5,4,8,1,5,10,2,6,3,9,4,8,1,5,10,2,6,3,9,5,10,2,8,4,12,6, %U A339491 3,9,1,7,5,10,2,8,4,12,6,3,9,1,7 %N A339491 Lexicographically earliest longest simple path in the divisor graph of {1,...,n}. Irregular triangle read by rows. %C A339491 A simple path in the divisor graph of {1,...,n} is a sequence of distinct numbers between 1 and n such that if k immediately follows m, then either k divides m or m divides k. For more information, references and links see A337125. %e A339491 1: [1], %e A339491 2: [1, 2], %e A339491 3: [2, 1, 3], %e A339491 4: [2, 4, 1, 3], %e A339491 5: [2, 4, 1, 3], %e A339491 6: [3, 6, 2, 4, 1, 5], %e A339491 7: [3, 6, 2, 4, 1, 5], %e A339491 8: [3, 6, 2, 4, 8, 1, 5], %e A339491 9: [4, 8, 2, 6, 3, 9, 1, 5], %e A339491 10: [4, 8, 1, 5, 10, 2, 6, 3, 9], %e A339491 11: [4, 8, 1, 5, 10, 2, 6, 3, 9], %e A339491 12: [5, 10, 2, 8, 4, 12, 6, 3, 9, 1, 7], %e A339491 13: [5, 10, 2, 8, 4, 12, 6, 3, 9, 1, 7], %e A339491 14: [5, 10, 1, 7, 14, 2, 8, 4, 12, 6, 3, 9], %e A339491 15: [6, 12, 4, 8, 1, 7, 14, 2, 10, 5, 15, 3, 9], %e A339491 16: [6, 12, 4, 8, 16, 1, 7, 14, 2, 10, 5, 15, 3, 9]. %p A339491 with(Iterator): %p A339491 DivisorPath := proc(n, k) local c, p, w, isok; %p A339491 isok := proc(A) local e, i, di; e := nops(A) - 1; %p A339491 di := (n, k) -> evalb(irem(n, k) = 0 or irem(k, n) = 0): %p A339491 for i from 1 to e while di(A[i], A[i+1]) do od; %p A339491 return evalb(i = e + 1) end: %p A339491 for c in Combination(n, k) do %p A339491 for p in Permute([seq(j + 1, j in c)], k) do %p A339491 w := convert(p, list); %p A339491 if isok(w) then return w fi: %p A339491 od od end: %p A339491 A337125 := [1, 2, 3, 4, 4, 6, 6, 7, 8, 9, 9]: %p A339491 for n from 1 to 9 do DivisorPath(n, A337125[n]) od; %Y A339491 Cf. A337125 (row length), A339490. %Y A339491 Cf. A339492, A339489, A339496. %Y A339491 Cf. A340114 (a variant problem). %K A339491 nonn,tabf %O A339491 1,3 %A A339491 _Peter Luschny_, Dec 29 2020 %E A339491 Signposting added to first comment by _Peter Munn_, Mar 12 2021