A339492 T(n, k) = tau(k) + floor(n/k) - 1, where tau = A000005. Triangle read by rows.
1, 2, 2, 3, 2, 2, 4, 3, 2, 3, 5, 3, 2, 3, 2, 6, 4, 3, 3, 2, 4, 7, 4, 3, 3, 2, 4, 2, 8, 5, 3, 4, 2, 4, 2, 4, 9, 5, 4, 4, 2, 4, 2, 4, 3, 10, 6, 4, 4, 3, 4, 2, 4, 3, 4, 11, 6, 4, 4, 3, 4, 2, 4, 3, 4, 2, 12, 7, 5, 5, 3, 5, 2, 4, 3, 4, 2, 6, 13, 7, 5, 5, 3, 5, 2, 4, 3, 4, 2, 6, 2
Offset: 1
Examples
Row 6 lists the cardinalities of the sets {1, 2, 3, 4, 5, 6}, {1, 2, 4, 6}, {1, 3, 6}, {1, 2, 4}, {1, 5}, {1, 2, 3, 6}. The triangle starts: [1] 1; [2] 2, 2; [3] 3, 2, 2; [4] 4, 3, 2, 3; [5] 5, 3, 2, 3, 2; [6] 6, 4, 3, 3, 2, 4; [7] 7, 4, 3, 3, 2, 4, 2; [8] 8, 5, 3, 4, 2, 4, 2, 4; [9] 9, 5, 4, 4, 2, 4, 2, 4, 3; [10] 10, 6, 4, 4, 3, 4, 2, 4, 3, 4.
Crossrefs
Programs
-
Maple
T := (n, k) -> NumberTheory:-tau(k) + iquo(n, k) - 1: seq(seq(T(n, k), k = 1..n), n = 1..13);
Formula
T(n, k) = card(divisors(k) union {k*j : j = 2..floor(n/k)}).
Comments