This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339499 #18 Jun 17 2025 20:44:52 %S A339499 4,5,8,9,2,4,6,1,2,6,6,3,7,9,8,6,1,7,1,3,5,8,1,0,2,4,2,0,7,3,5,0,7,0, %T A339499 7,3,6,9,2,7,4,1,4,8,3,3,8,6,1,6,7,4,8,3,0,6,5,0,1,9,9,9,5,7,4,4,4,9, %U A339499 7,6,6,4,4,8,6,2,2,8,2,4,0,9,9,8,0,6,1,3,1,6,1,4,4,9,5,3,5,6,0,8 %N A339499 Decimal expansion of the generating constant for the composite numbers. %C A339499 The integer parts of the sequence having this constant as starting value and thereafter a(n+1) = (frac(a(n))+1) * floor(a(n)), where floor and frac are integer and fractional part, are exactly the sequence of the composite numbers: see the Grime-Haran Numberphile video for details. %H A339499 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=_gCKX6VMvmU">2.920050977316</a>, Numberphile video, Nov 26 2020. %F A339499 Sum_{k >= 1} (c(k) - 1)/(c(1) * c(2) * ... * c(k-1)), where c(k) is the k-th composite number. %e A339499 4.5892461266379861713581024207350707369274148338616748... %o A339499 (Python) %o A339499 from mpmath import * #high precision computations %o A339499 #nsum function %o A339499 from sympy import * # to generate prime numbers %o A339499 mp.dps = 10000 %o A339499 #function that generates constant that encodes all composite numbers %o A339499 #cnt - number of prime numbers %o A339499 def composconst(cnt): %o A339499 if cnt==1: %o A339499 return 4-1 %o A339499 primlist=list() %o A339499 i=0 %o A339499 while (i<cnt): %o A339499 primlist.append(prime(i+1)) %o A339499 i=i+1 %o A339499 prims=set(primlist) %o A339499 alllist=range(2,primlist[-1]+2) #all numbers [2..prime(cnt)+1] %o A339499 alls=set(alllist) %o A339499 comps=alls-prims #all composite numbers [4..prime(cnt)+1] %o A339499 complist=list(comps) %o A339499 cnt2 = len(complist) %o A339499 return nsum(lambda k: (complist[int(k)]-1)/nprod(lambda l: complist[int(l)],[0,k-1]),[0,cnt2-1]) %o A339499 composconst(50) %Y A339499 Cf. A002808, A249270, A339204. %K A339499 nonn,cons %O A339499 1,1 %A A339499 _Kamil Zabkiewicz_, Dec 07 2020