cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339506 Numbers surviving a repeated sieving process for pseudo-lucky numbers (A249876).

This page as a plain text file.
%I A339506 #15 Jan 01 2021 14:37:08
%S A339506 1,3,5,7,13,17,31,35,41,43,47,63,101,105,107,131,175,177,185,211,235,
%T A339506 237,267,301,305,315,323,397,407,451,571,631,633,683,757,841,877,947,
%U A339506 987,1043,1221,1251,1431,1501,1655,1781,1961,1981,2023,2067,2157,2197,2253,2367,2457,2505,2615
%N A339506 Numbers surviving a repeated sieving process for pseudo-lucky numbers (A249876).
%C A339506 Start with the positive integers as the 1st starting sequence. The 1st full sieving process for the pseudo-lucky numbers begins with the 2nd term in the 1st starting sequence and generates A249876 (the 2nd starting sequence). The n-th full sieving process begins with the (n+1)-th term in the n-th starting sequence and generates the (n+1)-th starting sequence. The numbers that are left form the final sequence.
%C A339506 Let b(m) be the number of elements of this sequence <= m. Let c(m) = round(square(s*m/log(s*m))), where s = 11.
%C A339506   --------------------------------
%C A339506      m   | b(m) | c(m) | b(m)-c(m)
%C A339506   --------------------------------
%C A339506     10^2 |   12 |   13 |    -1
%C A339506     10^3 |   39 |   34 |    +5
%C A339506     10^4 |  103 |   97 |    +6
%C A339506   5*10^4 |  210 |  204 |    +6
%C A339506   6*10^4 |  228 |  222 |    +6
%C A339506   7*10^4 |  236 |  238 |    -2
%C A339506   8*10^4 |  256 |  254 |    +2
%C A339506   9*10^4 |  270 |  268 |    +3
%C A339506     10^5 |  282 |  281 |    +1
%C A339506   --------------------------------
%C A339506 Is c(m) an approximation to b(m)?
%e A339506 The 1st full sieving process:
%e A339506   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ...
%e A339506   1 X 3 X 5 X 7 X 9  X 11  X 13  X 15  X 17  X 19  X 21  X 23  X 25 ...
%e A339506   1   3   5   7   X    11    13    15    17     X    21    23    25 ...
%e A339506   1   3   5   7        11    13     X    17          21    23    25 ...
%e A339506 Continuing the above procedure generates the 2nd starting sequence (the pseudo-lucky numbers) to begin the 2nd full sieving process:
%e A339506   1 3 5 7 11 13 17 21 23 25 31 35 41 43 45 47 55 57 63 65 73 75 83 87 95 ...
%e A339506   1 3 5 7  X 13 17 21 23  X 31 35 41 43  X 47 55 57 63  X 73 75 83 87  X ...
%e A339506   1 3 5 7    13 17  X 23    31 35 41 43    47  X 57 63    73 75 83 87    ...
%e A339506   1 3 5 7    13 17    23    31 35 41 43    47     X 63    73 75 83 87    ...
%e A339506   1 3 5 7    13 17    23    31 35 41 43    47       63    73 75 83  X    ...
%e A339506 Continuing the above procedure generates the 3rd starting sequence to begin the 3rd full sieving process:
%e A339506   1 3 5 7 13 17 23 31 35 41 43 47 63 73 75 83 101 105 107 123 127 131 151 ...
%e A339506   1 3 5 7 13 17  X 31 35 41 43 47 63  X 75 83 101 105 107 123   X 131 151 ...
%e A339506   1 3 5 7 13 17    31 35 41 43 47 63     X 83 101 105 107 123     131 151 ...
%e A339506   1 3 5 7 13 17    31 35 41 43 47 63       83 101 105 107   X     131 151 ...
%e A339506 Continuing the above procedure generates the 4th starting sequence to begin the 4th full sieving process:
%e A339506   1 3 5 7 13 17 31 35 41 43 47 63 83 101 105 107 131 151 153 175 177 185 ...
%e A339506   1 3 5 7 13 17 31 35 41 43 47 63  X 101 105 107 131 151 153 175 177 185 ...
%e A339506   1 3 5 7 13 17 31 35 41 43 47 63    101 105 107 131   X 153 175 177 185 ...
%e A339506 Continuing the above procedure generates the 5th starting sequence to begin the 5th full sieving process:
%e A339506   1 3 5 7 13 17 31 35 41 43 47 63 101 105 107 131 153 175 177 185 211 235 ...
%e A339506   1 3 5 7 13 17 31 35 41 43 47 63 101 105 107 131   X 175 177 185 211 235 ...
%e A339506 ...
%e A339506 Continue forever and the numbers not crossed off give the sequence.
%Y A339506 Cf. A000959, A249876.
%K A339506 nonn
%O A339506 1,2
%A A339506 _Lechoslaw Ratajczak_, Dec 07 2020