This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339512 #23 Feb 16 2025 08:34:01 %S A339512 1,2,3,5,9,17,18,34,66,130,132,260,264,520,528,544,1056,2080,2112, %T A339512 4160,4224,4352,4608,8704,9216,17408,18432,34816,36864,69632,69633, %U A339512 135169,266241,270337,278529,294913,327681,589825,655361,786433,1048577,1572865,1572867 %N A339512 Number of subsets of {1..n} whose elements have the same number of distinct prime factors. %H A339512 Sebastian Karlsson, <a href="/A339512/b339512.txt">Table of n, a(n) for n = 0..1000</a> %H A339512 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a> %F A339512 a(n) = 1 + Sum_{k=1..n} 2^A334655(k). - _Sebastian Karlsson_, Feb 18 2021 %e A339512 a(5) = 17 subsets: {}, {1}, {2}, {3}, {4}, {5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5} and {2, 3, 4, 5}. %o A339512 (Python) %o A339512 from sympy import primefactors %o A339512 def test(n): %o A339512 if n==0: return -1 %o A339512 return len(primefactors(n)) %o A339512 def a(n): %o A339512 tests = [test(i) for i in range(n+1)] %o A339512 return sum(2**tests.count(v)-1 for v in set(tests)) %o A339512 print([a(n) for n in range(43)]) # _Michael S. Branicky_, Dec 07 2020 %Y A339512 Cf. A001221, A339511, A339514. %K A339512 nonn %O A339512 0,2 %A A339512 _Ilya Gutkovskiy_, Dec 07 2020 %E A339512 a(23)-a(42) from _Michael S. Branicky_, Dec 07 2020