A339513 Define R_{1}(x)=1, R_{n+1}(x)=(R_n(x)*2*x/(1+x^2))'; then a(n)=R_{n}(1).
1, 0, -1, 3, -2, -45, 347, -756, -13031, 184245, -810034, -11404503, 264733177, -1931955480, -21453955777, 796153961091, -8688345850874, -69492467459925, 4300450718587619, -65896562313762012, -307002797419794407, 37668399518087366325
Offset: 1
Keywords
Examples
R_1(x) = 1, so a(1) = R_1(1) = 1. R_2(x) = (R_1(x)*2*x/(1+x^2))' = (1 * 2*x/(1+x^2))' = 2*(1-x^2)/(1+x^2)^2, so a(2) = R_2(1) = 0. R_3(x) = (R_2(x)*2*x/(1+x^2))' = (2*(1-x^2)/(1+x^2)^2 * 2*x/(1+x^2))' = 4*(1-8*x^2+3*x^4)/(1+x^2)^4, so a(3) = R_3(1) = -1.
Links
- Luc Rousseau, Table of n, a(n) for n = 1..300
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052 [math.CA], 2005.
Programs
-
PARI
list_a(nmax)=my(n,r);n=1;r=1;print1(subst(r,x,1),", ");while(n
-
PARI
my(x='x+O('x^33)); Vec(serlaplace(serreverse(log(1+x)/2 + x^2/4 + x/2))) \\ Joerg Arndt, Dec 22 2020
Comments