cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.

This page as a plain text file.
%I A339559 #19 Feb 16 2025 08:34:01
%S A339559 0,0,1,0,2,1,4,3,7,6,14,14,23,27,41,47,70,84,114,141,190,225,303,370,
%T A339559 475,578,738,890,1131,1368,1698,2058,2549,3048,3759,4505,5495,6574,
%U A339559 7966,9483,11450,13606,16307,19351,23116,27297,32470,38293,45346,53342,62939
%N A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.
%C A339559 The multiplicities of such a partition form a non-graphical partition.
%H A339559 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>.
%F A339559 A027187(n) = a(n) + A339560(n).
%e A339559 The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot):
%e A339559   11   .   22     2111   33       2221     44         3222       55
%e A339559            1111          2211     4111     2222       6111       3322
%e A339559                          3111     211111   3311       222111     3331
%e A339559                          111111            5111       321111     4222
%e A339559                                            221111     411111     4411
%e A339559                                            311111     21111111   7111
%e A339559                                            11111111              222211
%e A339559                                                                  322111
%e A339559                                                                  331111
%e A339559                                                                  421111
%e A339559                                                                  511111
%e A339559                                                                  22111111
%e A339559                                                                  31111111
%e A339559                                                                  1111111111
%e A339559 For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways:
%e A339559   {{1,2},{1,2},{1,3},{1,4},{3,4}}
%e A339559   {{1,2},{1,3},{1,3},{1,4},{2,4}}
%e A339559   {{1,2},{1,3},{1,4},{1,4},{2,3}}
%e A339559 None of these are strict, so y is counted under a(22).
%t A339559 strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
%t A339559 Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]
%Y A339559 A320894 ranks these partitions (using Heinz numbers).
%Y A339559 A338915 allows equal pairs (x,x).
%Y A339559 A339560 counts the complement in even-length partitions.
%Y A339559 A339564 counts factorizations of the same type.
%Y A339559 A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
%Y A339559 A000569 counts graphical partitions, ranked by A320922.
%Y A339559 A001358 lists semiprimes, with squarefree case A006881.
%Y A339559 A002100 counts partitions into squarefree semiprimes.
%Y A339559 A058696 counts partitions of even numbers, ranked by A300061.
%Y A339559 A209816 counts multigraphical partitions, ranked by A320924.
%Y A339559 A320655 counts factorizations into semiprimes.
%Y A339559 A320656 counts factorizations into squarefree semiprimes.
%Y A339559 A339617 counts non-graphical partitions of 2n, ranked by A339618.
%Y A339559 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
%Y A339559 The following count partitions of even length and give their Heinz numbers:
%Y A339559 - A027187 has no additional conditions (A028260).
%Y A339559 - A096373 cannot be partitioned into strict pairs (A320891).
%Y A339559 - A338914 can be partitioned into strict pairs (A320911).
%Y A339559 - A338915 cannot be partitioned into distinct pairs (A320892).
%Y A339559 - A338916 can be partitioned into distinct pairs (A320912).
%Y A339559 - A339560 can be partitioned into distinct strict pairs (A339561).
%Y A339559 Cf. A001055, A001221, A005117, A007717, A025065, A030229, A089259, A292432, A320893, A338899, A338903, A339619.
%K A339559 nonn
%O A339559 0,5
%A A339559 _Gus Wiseman_, Dec 10 2020
%E A339559 More terms from _Jinyuan Wang_, Feb 14 2025