This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339559 #19 Feb 16 2025 08:34:01 %S A339559 0,0,1,0,2,1,4,3,7,6,14,14,23,27,41,47,70,84,114,141,190,225,303,370, %T A339559 475,578,738,890,1131,1368,1698,2058,2549,3048,3759,4505,5495,6574, %U A339559 7966,9483,11450,13606,16307,19351,23116,27297,32470,38293,45346,53342,62939 %N A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges. %C A339559 The multiplicities of such a partition form a non-graphical partition. %H A339559 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>. %F A339559 A027187(n) = a(n) + A339560(n). %e A339559 The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot): %e A339559 11 . 22 2111 33 2221 44 3222 55 %e A339559 1111 2211 4111 2222 6111 3322 %e A339559 3111 211111 3311 222111 3331 %e A339559 111111 5111 321111 4222 %e A339559 221111 411111 4411 %e A339559 311111 21111111 7111 %e A339559 11111111 222211 %e A339559 322111 %e A339559 331111 %e A339559 421111 %e A339559 511111 %e A339559 22111111 %e A339559 31111111 %e A339559 1111111111 %e A339559 For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways: %e A339559 {{1,2},{1,2},{1,3},{1,4},{3,4}} %e A339559 {{1,2},{1,3},{1,3},{1,4},{2,4}} %e A339559 {{1,2},{1,3},{1,4},{1,4},{2,3}} %e A339559 None of these are strict, so y is counted under a(22). %t A339559 strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; %t A339559 Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}] %Y A339559 A320894 ranks these partitions (using Heinz numbers). %Y A339559 A338915 allows equal pairs (x,x). %Y A339559 A339560 counts the complement in even-length partitions. %Y A339559 A339564 counts factorizations of the same type. %Y A339559 A000070 counts non-multigraphical partitions of 2n, ranked by A339620. %Y A339559 A000569 counts graphical partitions, ranked by A320922. %Y A339559 A001358 lists semiprimes, with squarefree case A006881. %Y A339559 A002100 counts partitions into squarefree semiprimes. %Y A339559 A058696 counts partitions of even numbers, ranked by A300061. %Y A339559 A209816 counts multigraphical partitions, ranked by A320924. %Y A339559 A320655 counts factorizations into semiprimes. %Y A339559 A320656 counts factorizations into squarefree semiprimes. %Y A339559 A339617 counts non-graphical partitions of 2n, ranked by A339618. %Y A339559 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657. %Y A339559 The following count partitions of even length and give their Heinz numbers: %Y A339559 - A027187 has no additional conditions (A028260). %Y A339559 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339559 - A338914 can be partitioned into strict pairs (A320911). %Y A339559 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339559 - A338916 can be partitioned into distinct pairs (A320912). %Y A339559 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339559 Cf. A001055, A001221, A005117, A007717, A025065, A030229, A089259, A292432, A320893, A338899, A338903, A339619. %K A339559 nonn %O A339559 0,5 %A A339559 _Gus Wiseman_, Dec 10 2020 %E A339559 More terms from _Jinyuan Wang_, Feb 14 2025