This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339560 #19 Feb 16 2025 08:34:01 %S A339560 1,0,0,1,1,2,2,4,5,8,8,13,17,22,28,39,48,62,81,101,127,167,202,253, %T A339560 318,395,486,608,736,906,1113,1353,1637,2011,2409,2922,3510,4227,5060, %U A339560 6089,7242,8661,10306,12251,14503,17236,20345,24045,28334,33374,39223,46076 %N A339560 Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges. %C A339560 Naturally, such a partition must have an even number of parts. Its multiplicities form a graphical partition (A000569, A320922), and vice versa. %H A339560 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>. %F A339560 A027187(n) = a(n) + A339559(n). %e A339560 The a(3) = 1 through a(11) = 13 partitions (A = 10): %e A339560 (21) (31) (32) (42) (43) (53) (54) (64) (65) %e A339560 (41) (51) (52) (62) (63) (73) (74) %e A339560 (61) (71) (72) (82) (83) %e A339560 (3211) (3221) (81) (91) (92) %e A339560 (4211) (3321) (4321) (A1) %e A339560 (4221) (5221) (4322) %e A339560 (4311) (5311) (4331) %e A339560 (5211) (6211) (4421) %e A339560 (5321) %e A339560 (5411) %e A339560 (6221) %e A339560 (6311) %e A339560 (7211) %e A339560 For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways: %e A339560 {{1,2},{1,3},{3,4}} %e A339560 {{1,3},{1,4},{2,3}}, %e A339560 so y is counted under a(14). %t A339560 strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; %t A339560 Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}] %Y A339560 A338916 allows equal pairs (x,x). %Y A339560 A339559 counts the complement in even-length partitions. %Y A339560 A339561 gives the Heinz numbers of these partitions. %Y A339560 A339619 counts factorizations of the same type. %Y A339560 A000070 counts non-multigraphical partitions of 2n, ranked by A339620. %Y A339560 A000569 counts graphical partitions, ranked by A320922. %Y A339560 A001358 lists semiprimes, with squarefree case A006881. %Y A339560 A002100 counts partitions into squarefree semiprimes. %Y A339560 A058696 counts partitions of even numbers, ranked by A300061. %Y A339560 A209816 counts multigraphical partitions, ranked by A320924. %Y A339560 A320655 counts factorizations into semiprimes. %Y A339560 A320656 counts factorizations into squarefree semiprimes. %Y A339560 A339617 counts non-graphical partitions of 2n, ranked by A339618. %Y A339560 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657. %Y A339560 A339656 counts loop-graphical partitions, ranked by A339658. %Y A339560 A339659 counts graphical partitions of 2n into k parts. %Y A339560 The following count partitions of even length and give their Heinz numbers: %Y A339560 - A027187 has no additional conditions (A028260). %Y A339560 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339560 - A338914 can be partitioned into strict pairs (A320911). %Y A339560 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339560 - A338916 can be partitioned into distinct pairs (A320912). %Y A339560 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A339560 Cf. A001055, A001221, A005117, A007717, A025065, A030229, A320893, A338899, A338903, A339564. %K A339560 nonn %O A339560 0,6 %A A339560 _Gus Wiseman_, Dec 10 2020 %E A339560 More terms from _Jinyuan Wang_, Feb 14 2025