This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339562 #10 Apr 18 2021 22:41:02 %S A339562 1,15,33,35,51,55,69,77,85,91,93,95,105,119,123,141,143,145,155,161, %T A339562 165,177,187,195,201,203,205,209,215,217,219,221,231,247,249,253,255, %U A339562 265,285,287,291,295,299,301,309,323,327,329,335,341,345,355,357,377,381 %N A339562 Squarefree numbers with no prime index dividing all the other prime indices. %C A339562 First differs from A342193 in lacking 45. %C A339562 Alternative name: 1 and squarefree numbers with smallest prime index not dividing all the other prime indices. %C A339562 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A339562 Also 1 and Heinz numbers of strict integer partitions with smallest part not dividing all the others (counted by A341450). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A339562 The sequence of terms together with their prime indices begins: %e A339562 1: {} 141: {2,15} 219: {2,21} %e A339562 15: {2,3} 143: {5,6} 221: {6,7} %e A339562 33: {2,5} 145: {3,10} 231: {2,4,5} %e A339562 35: {3,4} 155: {3,11} 247: {6,8} %e A339562 51: {2,7} 161: {4,9} 249: {2,23} %e A339562 55: {3,5} 165: {2,3,5} 253: {5,9} %e A339562 69: {2,9} 177: {2,17} 255: {2,3,7} %e A339562 77: {4,5} 187: {5,7} 265: {3,16} %e A339562 85: {3,7} 195: {2,3,6} 285: {2,3,8} %e A339562 91: {4,6} 201: {2,19} 287: {4,13} %e A339562 93: {2,11} 203: {4,10} 291: {2,25} %e A339562 95: {3,8} 205: {3,13} 295: {3,17} %e A339562 105: {2,3,4} 209: {5,8} 299: {6,9} %e A339562 119: {4,7} 215: {3,14} 301: {4,14} %e A339562 123: {2,13} 217: {4,11} 309: {2,27} %t A339562 Select[Range[100],#==1||SquareFreeQ[#]&&With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&] %Y A339562 The squarefree complement is A339563. %Y A339562 These partitions are counted by A341450. %Y A339562 The not necessarily squarefree version is A342193. %Y A339562 A000005 counts divisors. %Y A339562 A000070 counts partitions with a selected part. %Y A339562 A001221 counts distinct prime factors. %Y A339562 A005117 lists squarefree numbers. %Y A339562 A006128 counts partitions with a selected position (strict: A015723). %Y A339562 A056239 adds up prime indices (row sums of A112798). %Y A339562 A083710 counts partitions with a dividing part (strict: A097986). %Y A339562 Cf. A253249, A264401, A257993, A338470, A343337, A343338, A343339, A343379, A343380, A343382. %K A339562 nonn %O A339562 1,2 %A A339562 _Gus Wiseman_, Apr 10 2021