cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339562 Squarefree numbers with no prime index dividing all the other prime indices.

This page as a plain text file.
%I A339562 #10 Apr 18 2021 22:41:02
%S A339562 1,15,33,35,51,55,69,77,85,91,93,95,105,119,123,141,143,145,155,161,
%T A339562 165,177,187,195,201,203,205,209,215,217,219,221,231,247,249,253,255,
%U A339562 265,285,287,291,295,299,301,309,323,327,329,335,341,345,355,357,377,381
%N A339562 Squarefree numbers with no prime index dividing all the other prime indices.
%C A339562 First differs from A342193 in lacking 45.
%C A339562 Alternative name: 1 and squarefree numbers with smallest prime index not dividing all the other prime indices.
%C A339562 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A339562 Also 1 and Heinz numbers of strict integer partitions with smallest part not dividing all the others (counted by A341450). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%e A339562 The sequence of terms together with their prime indices begins:
%e A339562       1: {}         141: {2,15}     219: {2,21}
%e A339562      15: {2,3}      143: {5,6}      221: {6,7}
%e A339562      33: {2,5}      145: {3,10}     231: {2,4,5}
%e A339562      35: {3,4}      155: {3,11}     247: {6,8}
%e A339562      51: {2,7}      161: {4,9}      249: {2,23}
%e A339562      55: {3,5}      165: {2,3,5}    253: {5,9}
%e A339562      69: {2,9}      177: {2,17}     255: {2,3,7}
%e A339562      77: {4,5}      187: {5,7}      265: {3,16}
%e A339562      85: {3,7}      195: {2,3,6}    285: {2,3,8}
%e A339562      91: {4,6}      201: {2,19}     287: {4,13}
%e A339562      93: {2,11}     203: {4,10}     291: {2,25}
%e A339562      95: {3,8}      205: {3,13}     295: {3,17}
%e A339562     105: {2,3,4}    209: {5,8}      299: {6,9}
%e A339562     119: {4,7}      215: {3,14}     301: {4,14}
%e A339562     123: {2,13}     217: {4,11}     309: {2,27}
%t A339562 Select[Range[100],#==1||SquareFreeQ[#]&&With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]
%Y A339562 The squarefree complement is A339563.
%Y A339562 These partitions are counted by A341450.
%Y A339562 The not necessarily squarefree version is A342193.
%Y A339562 A000005 counts divisors.
%Y A339562 A000070 counts partitions with a selected part.
%Y A339562 A001221 counts distinct prime factors.
%Y A339562 A005117 lists squarefree numbers.
%Y A339562 A006128 counts partitions with a selected position (strict: A015723).
%Y A339562 A056239 adds up prime indices (row sums of A112798).
%Y A339562 A083710 counts partitions with a dividing part (strict: A097986).
%Y A339562 Cf. A253249, A264401, A257993, A338470, A343337, A343338, A343339, A343379, A343380, A343382.
%K A339562 nonn
%O A339562 1,2
%A A339562 _Gus Wiseman_, Apr 10 2021