This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339563 #12 Apr 18 2021 22:43:54 %S A339563 2,3,5,6,7,10,11,13,14,17,19,21,22,23,26,29,30,31,34,37,38,39,41,42, %T A339563 43,46,47,53,57,58,59,61,62,65,66,67,70,71,73,74,78,79,82,83,86,87,89, %U A339563 94,97,101,102,103,106,107,109,110,111,113,114,115,118,122,127 %N A339563 Squarefree numbers > 1 whose smallest prime index divides all the other prime indices. %C A339563 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A339563 Also Heinz numbers of strict integer partitions whose smallest part divides all the others (counted by A097986). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A339563 The sequence of terms together with their prime indices begins: %e A339563 2: {1} 29: {10} 59: {17} %e A339563 3: {2} 30: {1,2,3} 61: {18} %e A339563 5: {3} 31: {11} 62: {1,11} %e A339563 6: {1,2} 34: {1,7} 65: {3,6} %e A339563 7: {4} 37: {12} 66: {1,2,5} %e A339563 10: {1,3} 38: {1,8} 67: {19} %e A339563 11: {5} 39: {2,6} 70: {1,3,4} %e A339563 13: {6} 41: {13} 71: {20} %e A339563 14: {1,4} 42: {1,2,4} 73: {21} %e A339563 17: {7} 43: {14} 74: {1,12} %e A339563 19: {8} 46: {1,9} 78: {1,2,6} %e A339563 21: {2,4} 47: {15} 79: {22} %e A339563 22: {1,5} 53: {16} 82: {1,13} %e A339563 23: {9} 57: {2,8} 83: {23} %e A339563 26: {1,6} 58: {1,10} 86: {1,14} %t A339563 Select[Range[2,100],SquareFreeQ[#]&&With[{p=PrimePi/@First/@FactorInteger[#]},And@@IntegerQ/@(p/Min@@p)]&] %Y A339563 These partitions are counted by A097986 (non-strict: A083710). %Y A339563 The case with no 1's is counted by A098965 (non-strict: A083711). %Y A339563 The squarefree complement is A339562, ranked by A341450. %Y A339563 The complement of the not necessarily squarefree version is A342193. %Y A339563 A000005 counts divisors. %Y A339563 A000070 counts partitions with a selected part. %Y A339563 A001055 counts factorizations. %Y A339563 A001221 counts distinct prime factors. %Y A339563 A005117 lists squarefree numbers. %Y A339563 A006128 counts partitions with a selected position (strict: A015723). %Y A339563 A056239 adds up prime indices, row sums of A112798. %Y A339563 A338470 counts partitions with no dividing part. %Y A339563 Cf. A130714, A253249, A257993, A299702, A339564, A343340, A343378. %K A339563 nonn %O A339563 1,1 %A A339563 _Gus Wiseman_, Apr 10 2021