A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).
0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1
Keywords
Examples
The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30: ((2)) ((4)) ((6)) ((8)) ((12)) ((24)) ((30)) ((2)*2) ((2)*3) ((2)*4) ((2)*6) ((3)*8) ((5)*6) (2*(3)) (2*(4)) (2*(6)) (3*(8)) (5*(6)) ((2)*2*2) ((3)*4) ((4)*6) ((2)*15) (3*(4)) (4*(6)) (2*(15)) ((2)*2*3) ((2)*12) ((3)*10) (2*2*(3)) (2*(12)) (3*(10)) ((2)*2*6) ((2)*3*5) (2*2*(6)) (2*(3)*5) ((2)*3*4) (2*3*(5)) (2*(3)*4) (2*3*(4)) ((2)*2*2*3) (2*2*2*(3))
Crossrefs
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]