cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339565 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).

This page as a plain text file.
%I A339565 #29 Mar 26 2025 17:32:22
%S A339565 1,3,17,101,627,3999,25955,170571,1131433,7559301,50795985,342935689,
%T A339565 2324278669,15804931797,107775401349,736723618773,5046774983235,
%U A339565 34636814325087,238114193665451,1639378334244867,11301978856210543,78010917772099207,539055832175992119
%N A339565 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).
%H A339565 Alois P. Heinz, <a href="/A339565/b339565.txt">Table of n, a(n) for n = 0..1179</a> (first 101 terms from Kent Mei)
%F A339565 a(n) = [(x*y)^n] 1/(1-x-y-x*y-x*y^2-x^2*y). - _Alois P. Heinz_, Dec 09 2020
%F A339565 a(n) = A382436(2n,n). - _Alois P. Heinz_, Mar 25 2025
%F A339565 a(n) ~ sqrt((3776 + (26570110976 - 74946048*sqrt(177))^(1/3) + 8*(59*(879572 + 2481*sqrt(177)))^(1/3))/11328) * (2 + (459 - 12*sqrt(177))^(1/3)/3 + (153 + 4*sqrt(177))^(1/3)/3^(2/3))^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 26 2025
%p A339565 a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y));
%p A339565       for t in [x, y] do coeftayl(%, t=0, n) od
%p A339565     end:
%p A339565 seq(a(n), n=0..25);  # _Alois P. Heinz_, Dec 09 2020
%p A339565 # second Maple program:
%p A339565 b:= proc(l) option remember; `if`(l[2]=0, 1,
%p A339565       add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
%p A339565       [[1, 0], [0, 1], [1$2], [1, 2], [2, 1]]))
%p A339565     end:
%p A339565 a:= n-> b([n$2]):
%p A339565 seq(a(n), n=0..25);  # _Alois P. Heinz_, Dec 09 2020
%p A339565 # third Maple program:
%p A339565 a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1],
%p A339565       ((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n)
%p A339565     end:
%p A339565 seq(a(n), n=0..25);  # _Alois P. Heinz_, Dec 09 2020
%t A339565 b[l_] := b[l] = If[l[[2]] == 0, 1,
%t A339565      Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h,
%t A339565      {{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]];
%t A339565 a[n_] := b[{n, n}];
%t A339565 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 30 2022, after _Alois P. Heinz_ *)
%Y A339565 Cf. A000984, A001850, A137635, A339390, A382436.
%K A339565 nonn
%O A339565 0,2
%A A339565 _Kent Mei_, Dec 08 2020