This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339565 #29 Mar 26 2025 17:32:22 %S A339565 1,3,17,101,627,3999,25955,170571,1131433,7559301,50795985,342935689, %T A339565 2324278669,15804931797,107775401349,736723618773,5046774983235, %U A339565 34636814325087,238114193665451,1639378334244867,11301978856210543,78010917772099207,539055832175992119 %N A339565 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1). %H A339565 Alois P. Heinz, <a href="/A339565/b339565.txt">Table of n, a(n) for n = 0..1179</a> (first 101 terms from Kent Mei) %F A339565 a(n) = [(x*y)^n] 1/(1-x-y-x*y-x*y^2-x^2*y). - _Alois P. Heinz_, Dec 09 2020 %F A339565 a(n) = A382436(2n,n). - _Alois P. Heinz_, Mar 25 2025 %F A339565 a(n) ~ sqrt((3776 + (26570110976 - 74946048*sqrt(177))^(1/3) + 8*(59*(879572 + 2481*sqrt(177)))^(1/3))/11328) * (2 + (459 - 12*sqrt(177))^(1/3)/3 + (153 + 4*sqrt(177))^(1/3)/3^(2/3))^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 26 2025 %p A339565 a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y)); %p A339565 for t in [x, y] do coeftayl(%, t=0, n) od %p A339565 end: %p A339565 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 09 2020 %p A339565 # second Maple program: %p A339565 b:= proc(l) option remember; `if`(l[2]=0, 1, %p A339565 add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h= %p A339565 [[1, 0], [0, 1], [1$2], [1, 2], [2, 1]])) %p A339565 end: %p A339565 a:= n-> b([n$2]): %p A339565 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 09 2020 %p A339565 # third Maple program: %p A339565 a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1], %p A339565 ((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n) %p A339565 end: %p A339565 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 09 2020 %t A339565 b[l_] := b[l] = If[l[[2]] == 0, 1, %t A339565 Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h, %t A339565 {{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]]; %t A339565 a[n_] := b[{n, n}]; %t A339565 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 30 2022, after _Alois P. Heinz_ *) %Y A339565 Cf. A000984, A001850, A137635, A339390, A382436. %K A339565 nonn %O A339565 0,2 %A A339565 _Kent Mei_, Dec 08 2020