cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339567 Numbers k such that A007088(k) == 1 (mod k).

Original entry on oeis.org

1, 5, 15, 25, 55, 91, 137, 525, 625, 925, 3967, 5995, 7625, 10767, 25087, 57225, 68817, 565027, 591415, 2515825, 2757625, 4162019, 5276309, 96689255, 115686005, 133890625, 242899421, 492029715, 588620625, 1839399055, 7786281065, 11231388063, 17251448809, 71050380625
Offset: 1

Views

Author

Robert Israel, Dec 09 2020

Keywords

Comments

All terms are odd.

Examples

			a(3) = 15 is a term because 15 = 1111_2 and 1111 == 1 (mod 15).
		

Crossrefs

Programs

  • Maple
    filter:= t -> convert(t,binary) mod t = 1: filter(1):= true:
    select(filter, [seq(i,i=1..10^7,2)]);
  • Mathematica
    Block[{a = {1}, k}, Do[If[Mod[FromDigits@ IntegerDigits[i, 2], i] == 1, AppendTo[a, i]], {i, 2, 10^7}]; a] (* Michael De Vlieger, Dec 12 2020 *)
  • PARI
    isok(n) = Mod(fromdigits(binary(n)), n) == 1;
    forstep(k=1, 10^7, 2, if(isok(k), print1(k, ", "))); \\ Daniel Suteu, Dec 12 2020

Extensions

a(30)-a(34) from Daniel Suteu, Dec 12 2020